
0.1 oprobit.bayes: Bayesian Ordered Probit Regres-

sion

Use the ordinal probit regression model if your dependent variables are ordered and categor-
ical. They may take either integer values or character strings. The model is estimated using
a Gibbs sampler with data augmentation. For a maximum-likelihood implementation of this
models, see Section ??.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "oprobit.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

zelig() accepts the following arguments to monitor the Markov chain:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults 10,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� tune: tuning parameter for the Metropolis-Hasting step. The default value is NA which
corresponds to 0.05 divided by the number of categories in the response variable.

� verbose: defaults to FALSE If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed 12345.

� beta.start: starting values for the Markov chain, either a scalar or vector with length
equal to the number of estimated coefficients. The default is NA, which uses the maxi-
mum likelihood estimates as the starting values.

Use the following parameters to specify the model’s priors:

� b0: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value,
that value will be the prior mean for all the coefficients. The default is 0.
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� B0: prior precision parameter for the coefficients, either a square matrix (with dimen-
sions equal to the number of coefficients) or a scalar. If a scalar value, that value times
an identity matrix will be the prior precision parameter. The default is 0 which leads
to an improper prior.

Zelig users may wish to refer to help(MCMCoprobit) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example
Attaching the sample dataset:

> data(sanction)

Estimating ordered probit regression using oprobit.bayes:

> z.out <- zelig(ncost ~ mil + coop, model = "oprobit.bayes", data = sanction,

+ verbose = TRUE)

Creating an ordered dependent variable:
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> sanction$ncost <- factor(sanction$ncost, ordered = TRUE, levels = c("net gain",

+ "little effect", "modest loss", "major loss"))

Checking for convergence before summarizing the estimates:

> heidel.diag(z.out$coefficients)

> raftery.diag(z.out$coefficients)

> summary(z.out)

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given: x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

2. Simulating First Differences
Estimating the first difference (and risk ratio) in the probabilities of incurring different
level of cost when there is no military action versus military action while all the other
variables held at their default values.

> x.high <- setx(z.out, mil = 0)

> x.low <- setx(z.out, mil = 1)

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

Model

Let Yi be the ordered categorical dependent variable for observation i which takes an integer
value j = 1, . . . , J .

� The stochastic component is described by an unobserved continuous variable, Y ∗
i ,

Y ∗
i ∼ Normal(µi, 1).

Instead of Y ∗
i , we observe categorical variable Yi,

Yi = j if τj−1 ≤ Y ∗
i ≤ τj for j = 1, . . . , J.

where τj for j = 0, . . . , J are the threshold parameters with the following constraints,
τl < τm for l < m, and τ0 = −∞, τJ = ∞.
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The probability of observing Yi equal to category j is,

Pr(Yi = j) = Φ(τj | µi)− Φ(τj−1 | µi) for j = 1, . . . , J

where Φ(· | µi) is the cumulative distribution function of the Normal distribution with
mean µi and variance 1.

� The systematic component is given by

µi = xiβ,

where xi is the vector of k explanatory variables for observation i and β is the vector
of coefficients.

� The prior for β is given by

β ∼ Normalk
(
b0, B

−1
0

)
where b0 is the vector of means for the k explanatory variables and B0 is the k × k
precision matrix (the inverse of a variance-covariance matrix).

Quantities of Interest

� The expected values (qi$ev) for the ordered probit model are the predicted probability
of belonging to each category:

Pr(Yi = j) = Φ(τj | xiβ)− Φ(τj−1 | xiβ),

given the posterior draws of β and threshold parameters τ from the MCMC iterations.

� The predicted values (qi$pr) are the observed values of Yi given the observation scheme
and the posterior draws of β and cut points τ from the MCMC iterations.

� The first difference (qi$fd) in category j for the ordered probit model is defined as

FDj = Pr(Yi = j | X1)− Pr(Yi = j | X).

� The risk ratio (qi$rr) in category j is defined as

RRj = Pr(Yi = j | X1) / Pr(Yi = j | X).

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group in category j is

1

nj

nj∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]},

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of observations in the treatment group that
belong to category j.
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� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group in category j is

1

nj

nj∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of observations in the treatment group that
belong to category j.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(y ~ x, model = "oprobit.bayes", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated coefficients
β and threshold parameters τ . Note, element τ1 is normalized to 0 and is not
returned in the coefficients object.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

� From the sim() output object s.out:

– qi$ev: the simulated expected values (probabilities) of each of the J categories
for the specified values of x.

– qi$pr: the simulated predicted values (observed values) for the specified values
of x.

– qi$fd: the simulated first difference in the expected values of each of the J
categories for the values specified in x and x1.

– qi$rr: the simulated risk ratio for the expected values of each of the J categories
simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.
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How to Cite

To cite the oprobit.bayes Zelig model use:

Ben Goodrich and Ying Lu. 2007. “oprobit.bayes: Bayesian Ordered Probit
Regression,” in Kosuke Imai,Gary King, and Olivia Lau, “Zelig: Everyone’s
Statistical Software,” http://gking.harvard.edu/zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Toward A Common Frame-
work for Statistical Analysis and Development,” http://gking.harvard.

edu/files/abs/z-abs.shtml.

See also

Bayesian ordinal probit regression is part of the MCMCpack library by Andrew D. Martin
and Kevin M. Quinn (Martin and Quinn 2005). The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines (Plummer
et al. 2005).
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