
0.1 normal: Normal Regression for Continuous Depen-

dent Variables

The Normal regression model is a close variant of the more standard least squares regression
model (see Section ??). Both models specify a continuous dependent variable as a linear
function of a set of explanatory variables. The Normal model reports maximum likelihood
(rather than least squares) estimates. The two models differ only in their estimate for the
stochastic parameter σ.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for normal
regression:

� robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard
errors via the sandwich package (see Zeileis (2004)). The default type of robust stan-
dard error is heteroskedastic and autocorrelation consistent (HAC), and assumes that
observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

* "vcovHAC": (default if robust = TRUE) HAC standard errors.

* "kernHAC": HAC standard errors using the weights given in Andrews (1991).

* "weave": HAC standard errors using the weights given in Lumley and Hea-
gerty (1999).

– order.by: defaults to NULL (the observations are chronologically ordered as in the
original data). Optionally, you may specify a vector of weights (either as order.by
= z, where z exists outside the data frame; or as order.by = ~z, where z is a
variable in the data frame). The observations are chronologically ordered by the
size of z.

– ...: additional options passed to the functions specified in method. See the
sandwich library and Zeileis (2004) for more options.

Examples

1. Basic Example with First Differences

Attach sample data:
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> data(macro)

Estimate model:

> z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "normal",

+ data = macro)

Summarize of regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, with high (80th per-
centile) and low (20th percentile) values for trade:

> x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8))

> x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2))

Generate first differences for the effect of high versus low trade on GDP:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

A visual summary of quantities of interest:

> plot(s.out1)
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2. Using Dummy Variables

Estimate a model with a dummy variable for each year and country (see ?? for help
with dummy variables). Note that you do not need to create dummy variables, as
the program will automatically parse the unique values in the selected variables into
dummy variables.

> z.out2 <- zelig(unem ~ gdp + trade + capmob + as.factor(year) +

+ as.factor(country), model = "normal", data = macro)

Set values for the explanatory variables, using the default mean/mode variables, with
country set to the United States and Japan, respectively: Simulate quantities of inter-
est:
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Model

Let Yi be the continuous dependent variable for observation i.

� The stochastic component is described by a univariate normal model with a vector of
means µi and scalar variance σ2:

Yi ∼ Normal(µi, σ
2).

� The systematic component is
µi = xiβ,

where xi is the vector of k explanatory variables and β is the vector of coefficients.

Quantities of Interest

� The expected value (qi$ev) is the mean of simulations from the the stochastic compo-
nent,

E(Y ) = µi = xiβ,

given a draw of β from its posterior.

� The predicted value (qi$pr) is drawn from the distribution defined by the set of pa-
rameters (µi, σ).

� The first difference (qi$fd) is:

FD = E(Y | x1)− E(Y | x)

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,
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where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "normal", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: fitted values. For the normal model, these are identical to the
linear predictors.

– linear.predictors: fitted values. For the normal model, these are identical to
fitted.values.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by
(µi, σ).
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– qi$fd: the simulated first difference in the simulated expected values for the
values specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the normal Zelig model:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “normal: Normal Regression
for Continuous Dependent Variables,” in Kosuke Imai, Gary King, and Olivia
Lau, “Zelig: Everyone’s Statistical Software,” http://gking.harvard.edu/

zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Toward A Common Frame-
work for Statistical Analysis and Development,” http://gking.harvard.

edu/files/abs/z-abs.shtml.

See also

The normal model is part of the stats package by Venables and Ripley (2002). Advanced
users may wish to refer to help(glm) and help(family), as well as McCullagh and Nelder
(1989). Robust standard errors are implemented via the sandwich package by Zeileis (2004).
Sample data are from King et al. (2000).
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