
0.1 lognorm: Log-Normal Regression for Duration De-

pendent Variables

The log-normal model describes an event’s duration, the dependent variable, as a function
of a set of explanatory variables. The log-normal model may take time censored dependent
variables, and allows the hazard rate to increase and decrease.

Syntax

> z.out <- zelig(Surv(Y, C) ~ X, model = "lognorm", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Log-normal models require that the dependent variable be in the form Surv(Y, C), where Y

and C are vectors of length n. For each observation i in 1, . . . , n, the value yi is the duration
(lifetime, for example) of each subject, and the associated ci is a binary variable such that
ci = 1 if the duration is not censored (e.g., the subject dies during the study) or ci = 0 if the
duration is censored (e.g., the subject is still alive at the end of the study). If ci is omitted,
all Y are assumed to be completed; that is, time defaults to 1 for all observations.

Input Values

In addition to the standard inputs, zelig() takes the following additional options for log-
normal regression:

� robust: defaults to FALSE. If TRUE, zelig() computes robust standard errors based
on sandwich estimators (see Huber (1981) and White (1980)) based on the options in
cluster.

� cluster: if robust = TRUE, you may select a variable to define groups of correlated
observations. Let x3 be a variable that consists of either discrete numeric values,
character strings, or factors that define strata. Then

> z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3",

model = "exp", data = mydata)

means that the observations can be correlated within the strata defined by the variable
x3, and that robust standard errors should be calculated according to those clusters. If
robust = TRUE but cluster is not specified, zelig() assumes that each observation
falls into its own cluster.
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Example

Attach the sample data:

> data(coalition)

Estimate the model:

> z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model = "lognorm",

+ data = coalition)

View the regression output:

> summary(z.out)

Set the baseline values (with the ruling coalition in the minority) and the alternative values
(with the ruling coalition in the majority) for X:

> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

Simulate expected values (qi$ev) and first differences (qi$fd):

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

> plot(s.out)

2



10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

Expected Values: E(Y|X)

D
en

si
ty

0 100 200 300 400 500 600 700

0.
00

0.
02

0.
04

Predicted Values: Y|X

D
en

si
ty

5 10 15 20 25

0.
00

0.
04

0.
08

First Differences: E(Y|X1)−E(Y|X)

D
en

si
ty

Model

Let Y ∗
i be the survival time for observation i with the density function f(y) and the corre-

sponding distribution function F (t) =
∫ t

0
f(y)dy. This variable might be censored for some

observations at a fixed time yc such that the fully observed dependent variable, Yi, is defined
as

Yi =

{
Y ∗

i if Y ∗
i ≤ yc

yc if Y ∗
i > yc

� The stochastic component is described by the distribution of the partially observed
variable, Y ∗. For the lognormal model, there are two equivalent representations:

Y ∗
i ∼ LogNormal(µi, σ

2) or log(Y ∗
i ) ∼ Normal(µi, σ

2)

where the parameters µi and σ2 are the mean and variance of the Normal distribution.
(Note that the output from zelig() parameterizes scale= σ.)
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In addition, survival models like the lognormal have three additional properties. The
hazard function h(t) measures the probability of not surviving past time t given survival
up to t. In general, the hazard function is equal to f(t)/S(t) where the survival function
S(t) = 1 −

∫ t

0
f(s)ds represents the fraction still surviving at time t. The cumulative

hazard function H(t) describes the probability of dying before time t. In general,
H(t) =

∫ t

0
h(s)ds = − log S(t). In the case of the lognormal model,

h(t) =
1√

2π σt S(t)
exp

{
− 1

2σ2
(log λt)2

}
S(t) = 1− Φ

(
1

σ
log λt

)
H(t) = − log

{
1− Φ

(
1

σ
log λt

)}
where Φ(·) is the cumulative density function for the Normal distribution.

� The systematic component is described as:

µi = xiβ.

Quantities of Interest

� The expected values (qi$ev) for the lognormal model are simulations of the expected
duration:

E(Y ) = exp

(
µi +

1

2
σ2

)
,

given draws of β and σ from their sampling distributions.

� The predicted value is a draw from the log-normal distribution given simulations of
the parameters (λi, σ).

� The first difference (qi$fd) is

FD = E(Y | x1)− E(Y | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]},

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. When Yi(ti = 1) is censored rather than observed, we replace it with
a simulation from the model given available knowledge of the censoring process. Vari-
ation in the simulations is due to two factors: uncertainty in the imputation process
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for censored y∗i and uncertainty in simulating E[Yi(ti = 0)], the counterfactual ex-
pected value of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− ̂Yi(ti = 0)},

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. When Yi(ti = 1) is censored rather than observed, we replace it with a
simulation from the model given available knowledge of the censoring process. Variation
in the simulations are due to two factors: uncertainty in the imputation process for

censored y∗i and uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted value
of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(Surv(Y, C) ~ X, model = "lognorm", data), then
you may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– icoef: parameter estimates for the intercept and σ.

– var: Variance-covariance matrix.

– loglik: Vector containing the log-likelihood for the model and intercept only
(respectively).

– linear.predictors: the vector of xiβ.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

� Most of this may be conveniently summarized using summary(z.out). From summary(z.out),
you may additionally extract:

– table: the parameter estimates with their associated standard errors, p-values,
and t-statistics.
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� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by
(λi, σ).

– qi$fd: the simulated first differences between the simulated expected values for
x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the lognorm Zelig model:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “lognorm: Log-Normal Re-
gression for Duration Dependent Variable,” in Kosuke Imai, Gary King, and
Olivia Lau,“Zelig: Everyone’s Statistical Software,”http://gking.harvard.
edu/zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Toward A Common Frame-
work for Statistical Analysis and Development,” http://gking.harvard.

edu/files/abs/z-abs.shtml.

See also

The exponential function is part of the survival library by by Terry Therneau, ported to R
by Thomas Lumley. Advanced users may wish to refer to help(survfit) in the survival
library, and Venables and Ripley (2002).Sample data are from King et al. (1990).
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