User Guide for CHOLMOD: a sparse Cholesky factorization and

modification package

Timothy A. Davis
Dept. of Computer and Information Science and Engineering
Univ. of Florida, Gainesville, FL.

Version 1.6, Nov 1, 2007

Abstract

CHOLMOD! is a set of routines for factorizing sparse symmetric positive definite matrices
of the form A or AAT, updating/downdating a sparse Cholesky factorization, solving linear
systems, updating/downdating the solution to the triangular system Lx = b, and many other
sparse matrix functions for both symmetric and unsymmetric matrices. Its supernodal Cholesky
factorization relies on LAPACK and the Level-3 BLAS, and obtains a substantial fraction of the
peak performance of the BLAS. Both real and complex matrices are supported. CHOLMOD is
written in ANSI/ISO C, with both C and MATLAB interfaces. This code works on Microsoft
Windows and many versions of Unix and Linux.

CHOLMOD Copyright(©2005-2006 by Timothy A. Davis. Portions are also copyrighted by
William W. Hager (the Modify Module), and the University of Florida (the Partition and Core
Modules). All Rights Reserved. Some of CHOLMOD’s Modules are distributed under the GNU
General Public License, and others under the GNU Lesser General Public License. Refer to each
Module for details. CHOLMOD is also available under other licenses that permit its use in pro-
prietary applications; contact the authors for details. See http://www.cise.ufl.edu/research/sparse
for the code and all documentation, including this User Guide.

!CHOLMOD is short for CHOLesky MODification, since a key feature of the package is its ability to up-
date/downdate a sparse Cholesky factorization

Contents

1

2

Overview

Primary routines and data structures

Simple example program

Installation of the C-callable library

Using CHOLMOD in MATLAB

analyze: order and analyze oL Lo
bisect: find a node separator
chol2: same as cholo e
cholmod2: supernodal backslash
cholmod demo: a short demo program
cholmod make: compile CHOLMOD in MATLAB
etree2: same as etreeo e e
graph_demo: graph partitioning demoo oL
lchol: LLT factorization
ldlchol: LDLT factorization
ldlsolve: solve using an LDLT factorization
1dlsplit: split an LDLT factorization.
ldlupdate: update/downdate an LDLT factorization
mread: read a sparse or dense matrix from a Matrix Market file
mwrite: write a sparse or densematrix to a Matrix Market file.
metis: order with METIS
nesdis: order with CHOLMOD nested dissection
resymbol: re-do symbolic factorization oL oo
sdmult: sparse matrix times dense matrix
spsym: determine symmetry L. Lo
sSparse2: SamMe aS SPATSE e e e e e e e e e e e e e
symbfact2: same as symbfact 0000000

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

Installation for use in MATLAB
cholmod make: compiling CHOLMOD in MATLAB
6.2 Unix make for compiling CHOLMOD

6.1

Integer and floating-point types, and notation used

The CHOLMOD Modules, objects, and functions
8.1 Core Module: basic data structures and definitions

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6

cholmod_common: parameters, statistics, and workspace
cholmod_sparse: a sparse matrix in compressed column form
cholmod factor: a symbolic or numeric factorization
cholmod dense: adensematrix
cholmod triplet: a sparse matrix in “triplet” form
Memory management routines L0

8.2 Check Module: print/check the CHOLMOD objects

10

11

14
15
16
16
17
18
18
20
20
22
22
23
23
24
25
25
26
27
28
28
29
31
32

33
33
33

34

8.3 Cholesky Module: sparse Cholesky factorization
8.4 Modify Module: update/downdate a sparse Cholesky factorization
8.5 MatrixOps Module: basic sparse matrix operations
8.6 Supernodal Module: supernodal sparse Cholesky factorization
8.7 Partition Module: graph-partitioning-based orderings.

9 CHOLMOD naming convention, parameters, and return values

10 Core Module: cholmod_common object

10.1 Constant definitions L
10.2 cholmod_common: parameters, statistics, and workspace
10.3 cholmod_start: start CHOLMOD
10.4 cholmod_finish: finish CHOLMOD
10.5 cholmod defaults: set default parameters.
10.6 cholmod maxrank: maximum update/downdate rank
10.7 cholmod_allocate_work: allocate workspace
10.8 cholmod_free_work: free workspace
10.9 cholmod clear flag: clear Flag array
10.10cholmod_error: report €rror e e e e e e e e
10.11cholmod _dbound: bound diagonal of L. L.
10.12cholmod_hypot: sqrt (X*x+y*y)
10.13cholmod_divcomplex: complex divide

11 Core Module: cholmod_sparse object

11.1 cholmod sparse: compressed-column sparse matrix
11.2 cholmod_allocate_sparse: allocate sparse matrix
11.3 cholmod free_sparse: free sparse matrix
11.4 cholmod_reallocate_sparse: reallocate sparse matrix
11.5 cholmod nnz: number of entries in sparse matrix
11.6 cholmod_speye: sparse identity matrix o0
11.7 cholmod_spzeros: sparse zero matrix L.
11.8 cholmod_transpose: transpose sparse matrix
11.9 cholmod ptranspose: transpose/permute sparse matrix
11.10cholmod_sort: sort columns of a sparse matrix
11.11cholmod transpose_unsym: transpose/permute unsymmetric sparse matrix
11.12cholmod_transpose_sym: transpose/permute symmetric sparse matrix
11.13cholmod band: extract band of a sparse matrix
11.14cholmod band_inplace: extract band, in place
11.15cholmod_aat: compute AAT
11.16cholmod_copy_sparse: copy sparse matrix
11.17cholmod_copy: copy (and change) sparse matrix
11.18cholmod_add: add sparse matriceso
11.19cholmod_sparse_xtype: change sparse xtype

12 Core Module: cholmod_factor object

12.1 cholmod_factor object: a sparse Cholesky factorization
12.2 cholmod_free_factor: free factor.
12.3 cholmod_allocate_factor: allocate factor.

45

46
46
48
o8
o8
o8
o8
99
99
99
60
60
60
61

62
62
63
63
63
64
64
64
65
65
65
66
67
68
68
69
69
70
71
71

12.4 cholmod reallocate_factor: reallocate factor
12.5 cholmod_change_factor: change factor
12.6 cholmod pack factor: pack the columns of a factor
12.7 cholmod_reallocate_column: reallocate one column of a factor
12.8 cholmod factor_to_sparse: sparse matrix copy of a factor
12.9 cholmod copy_factor: copy factor
12.10cholmod _factor_xtype: change factor xtype

13 Core Module: cholmod_dense object

13.1 cholmod dense object: a dense matrix
13.2 cholmod_allocate_dense: allocate dense matrix
13.3 cholmod_free dense: free dense matrix
13.4 cholmod_zeros: dense zero matrix
13.5 cholmod ones: dense matrix, allones. L L.
13.6 cholmod_eye: dense identity matrix oL
13.7 cholmod_sparse_to_dense: dense matrix copy of a sparse matrix
13.8 cholmod dense_to_sparse: sparse matrix copy of a dense matrix
13.9 cholmod _copy_dense: copy dense matrix
13.10cholmod_copy_dense2: copy dense matrix (preallocated)
13.11cholmod _dense _xtype: change dense matrix xtype

14 Core Module: cholmod triplet object

14.1 cholmod _triplet object: sparse matrix in triplet form
14.2 cholmod_allocate_triplet: allocate triplet matrix
14.3 cholmod free triplet: free triplet matrix,
14.4 cholmod_reallocate_triplet: reallocate triplet matrix
14.5 cholmod_sparse_to_triplet: triplet matrix copy of a sparse matrix
14.6 cholmod triplet_to_sparse: sparse matrix copy of a triplet matrix
14.7 cholmod_copy_triplet: copy triplet matrix
14.8 cholmod_triplet_xtype: change triplet xtype

15 Core Module: memory management

15.1 cholmod malloc: allocate memory
15.2 cholmod_calloc: allocate and clear memory
15.3 cholmod_free: free memory Lo
15.4 cholmod_realloc: reallocate memory
15.5 cholmod reallocmultiple: reallocate memory

16 Check Module routines

16.1 cholmod_check_common: check Common object
16.2 cholmod print_common: print Common object
16.3 cholmod_check_sparse: check sparse matrix
16.4 cholmod_print_sparse: print sparse matrix Lo L.
16.5 cholmod_check_dense: check dense matrix.
16.6 cholmod print_dense: print dense matrix
16.7 cholmod_check_factor: check factor L.
16.8 cholmod print_factor: print factor Lo
16.9 cholmod_check_triplet: check triplet matrix

80
80
80
80
81
81
81
82
82
82
83
83

84
84
85
85
86
86
86
87
87

88
88
88
89
89
90

16.10cholmod_print_triplet: print triplet matrix 95

16.11cholmod_check_subset: check subset L. 96
16.12cholmod_print_subset: print subset oL oL 96
16.13cholmod_check_perm: check permutation. 97
16.14cholmod_print_perm: print permutationo 97
16.15cholmod_check_parent: check elimination tree 98
16.16cholmod _print_parent: print elimination tree. L. 98
16.17cholmod read triplet: read triplet matrix from file 99
16.18cholmod _read_sparse: read sparse matrix from file 100
16.19cholmod_read dense: read dense matrix from file 101
16.20cholmod read matrix: read a matrix from file 101
16.21cholmod write_sparse: write a sparse matrix toafile 102
16.22cholmod write_dense: write a dense matrix toafile 102
17 Cholesky Module routines 103
17.1 cholmod_analyze: symbolic factorization 103
17.2 cholmod factorize: numeric factorization 105
17.3 cholmod_analyze_ p: symbolic factorization, given permutation 106
17.4 cholmod factorize p: numeric factorization, given permutation 106
17.5 cholmod_solve: solve a linear system 107
17.6 cholmod_spsolve: solve a linear system 107
17.7 cholmod etree: find elimination tree 108
17.8 cholmod_rowcolcounts: nonzeros counts of a factor 108
17.9 cholmod_analyze_ordering: analyze a permutation 109
17.10cholmod_amd: interface to AMD 110
17.11cholmod _colamd: interface to COLAMD 110
17.12cholmod _rowfac: row-oriented Cholesky factorization 111
17.13cholmod _rowfac mask: row-oriented Cholesky factorization 112
17.14cholmod _row_subtree: pattern of row of a factor 113
17.15cholmod_row_lsubtree: pattern of row of a factor 114
17.16cholmod _resymbol: re-do symbolic factorization 115
17.17cholmod _resymbol noperm: re-do symbolic factorization 115
17.18cholmod_postorder: tree postorder L 116
17.19cholmod_rcond: reciprocal condition number 116
18 Modify Module routines 117
18.1 cholmod updown: update/downdate 117
18.2 cholmod updown solve: update/downdate L. 118
18.3 cholmod_updown mark: update/downdate 119
18.4 cholmod updown mask: update/downdate 119
18.5 cholmod rowadd: add row to factor L L 120
18.6 cholmod_rowadd_solve: add row to factor 120
18.7 cholmod_rowdel: delete row from factor 121
18.8 cholmod_rowdel _solve: delete row from factor 121
18.9 cholmod rowadd mark: add row to factor 122
18.10cholmod_rowdel mark: delete row from factor 122

19 MatrixOps Module routines 123

19.1 cholmod_drop: drop small entries L 123
19.2 cholmod norm dense: dense matrix norm 123
19.3 cholmod norm_sparse: sparse matrix norm 123
19.4 cholmod scale: scale sparse matrixo oL 124
19.5 cholmod_sdmult: sparse-times-dense matrix 125
19.6 cholmod_ssmult: sparse-times-sparse matrix 125
19.7 cholmod_submatrix: sparse submatrix 126
19.8 cholmod horzcat: horizontal concatenation 127
19.9 cholmod_vertcat: vertical concatenation 127
19.10cholmod_symmetry: compute the symmetry of a matrix 128
20 Supernodal Module routines 130
20.1 cholmod_super_symbolic: supernodal symbolic factorization 130
20.2 cholmod_super numeric: supernodal numeric factorization 131
20.3 cholmod_super_lsolve: supernodal forward solve. 132
20.4 cholmod_super_ltsolve: supernodal backsolve, 132
21 Partition Module routines 133
21.1 cholmod nested dissection: nested dissection ordering 133
21.2 cholmod metis: interface to METIS nested dissection 134
21.3 cholmod_camd: interface to CAMD 135
21.4 cholmod_ccolamd: interface to CCOLAMD 136
21.5 cholmod_csymamd: interface to CSYMAMD 136
21.6 cholmod_bisect: graph bisector oL 137
21.7 cholmod metis_bisector: interface to METIS node bisector 137
21.8 cholmod_collapse_septree: prune a separator tree 138

1 Overview

CHOLMOD is a set of ANSI C routines for solving systems of linear equations, Ax = b, when A
is sparse and symmetric positive definite, and x and b can be either sparse or dense.? Complex
matrices are supported, in two different formats. CHOLMOD includes high-performance left-
looking supernodal factorization and solve methods [21], based on LAPACK [3] and the BLAS [12].
After a matrix is factorized, its factors can be updated or downdated using the techniques described
by Davis and Hager in [8, 9, 10]. Many additional sparse matrix operations are provided, for both
symmetric and unsymmetric matrices (square or rectangular), including sparse matrix multiply,
add, transpose, permutation, scaling, norm, concatenation, sub-matrix access, and converting to
alternate data structures. Interfaces to many ordering methods are provided, including minimum
degree (AMD [1, 2], COLAMD (6, 7]), constrained minimum degree (CSYMAMD, CCOLAMD,
CAMD), and graph-partitioning-based nested dissection (METIS [18]). Most of its operations are
available within MATLAB via mexFunction interfaces.

A pair of articles on CHOLMOD has been submitted to the ACM Transactions on Mathematical
Softare: [4, 11].

CHOLMOD 1.0 replaces chol (the sparse case), symbfact, and etree in MATLAB 7.2 (R2006a),
and is used for x=A\b when A is symmetric positive definite [14]. It will replace sparse in a future
version of MATLAB.

The C-callable CHOLMOD library consists of 133 user-callable routines and one include file.
Each routine comes in two versions, one for int integers and another for long. Many of the routines
can support either real or complex matrices, simply by passing a matrix of the appropriate type.

Nick Gould, Yifan Hu, and Jennifer Scott have independently tested CHOLMOD'’s performance,
comparing it with nearly a dozen or so other solvers [17, 16]. Its performance was quite competitive.

2Some support is provided for symmetric indefinite matrices.

2 Primary routines and data structures

Five primary CHOLMOD routines are required to factorize A or AAT and solve the related system
Ax =b or AATx = b, for either the real or complex cases:

1.

2.

5.

cholmod_start: This must be the first call to CHOLMOD.

cholmod_analyze: Finds a fill-reducing ordering, and performs the symbolic factorization,
either simplicial (non-supernodal) or supernodal.

. cholmod_factorize: Numerical factorization, either simplicial or supernodal, LLT or LDLT

using either the symbolic factorization from cholmod_analyze or the numerical factorization
from a prior call to cholmod _factorize.

. cholmod_solve: Solves Ax = b, or many other related systems, where x and b are dense

matrices. The cholmod_spsolve routine handles the sparse case. Any mixture of real and
complex A and b are allowed.

cholmod_finish: This must be the last call to CHOLMOD.

Additional routines are also required to create and destroy the matrices A, x, b, and the LLT
or LDLT factorization. CHOLMOD has five kinds of data structures, referred to as objects and
implemented as pointers to struct’s:

1.

cholmod_common: parameter settings, statistics, and workspace used internally by CHOLMOD.
See Section 10 for details.

cholmod_sparse: a sparse matrix in compressed-column form, either pattern-only, real, com-
)))
plex, or “zomplex.” In its basic form, the matrix A contains:

e A->p, an integer array of size A->ncol+1.
e A->i an integer array of size A->nzmax.

e A->x, a double array of size A->nzmax or twice that for the complex case. This is
compatible with the Fortran and ANSI C99 complex data type.

e A->z a double array of size A->nzmax if A is zomplex. A zomplex matrix has a z
array, thus the name. This is compatible with the MATLAB representation of complex
matrices.

For all four types of matrices, the row indices of entries of column j are located in A->i
[A->p [j] ... A->p [j+1]1-1]. For a real matrix, the corresponding numerical values are
in A->x at the same location. For a complex matrix, the entry whose row index is A->i
[p] is contained in A->x [2xp] (the real part) and A->x [2*p+1] (the imaginary part). For
a zomplex matrix, the real part is in A->x [p] and imaginary part is in A->z [p]. See
Section 11 for more details.

cholmod_factor: A symbolic or numeric factorization, either real, complex, or zomplex. It
can be either an LLT or LDLT factorization, and either simplicial or supernodal. You will
normally not need to examine its contents. See Section 12 for more details.

cholmod dense: A dense matrix, either real, complex or zomplex, in column-major order.
This differs from the row-major convention used in C. A dense matrix X contains

e X->x, a double array of size X->nzmax or twice that for the complex case.

e X->z, a double array of size X->nzmax if X is zomplex.

For a real dense matrix x;; is X->x [i+]j*d] where d = X->d is the leading dimension of X.
For a complex dense matrix, the real part of z;; is X->x [2*(i+j*d)] and the imaginary part
is X->x [2*(i+j*d)+1]. For a zomplex dense matrix, the real part of z;; is X->x [i+]j*d]
and the imaginary part is X->z [i+j*d]. Real and complex dense matrices can be passed to
LAPACK and the BLAS. See Section 13 for more details.

5. cholmod_triplet: CHOLMOD’s sparse matrix (cholmod_sparse) is the primary input for
nearly all CHOLMOD routines, but it can be difficult for the user to construct. A simpler
method of creating a sparse matrix is to first create a cholmod_triplet matrix, and then
convert it to a cholmod_sparse matrix via the cholmod_triplet_to_sparse routine. In its
basic form, the triplet matrix T contains

e T->i and T->j, integer arrays of size T->nzmax.
e T->x, a double array of size T->nzmax or twice that for the complex case.

e T->z, a double array of size T->nzmax if T is zomplex.

The kth entry in the data structure has row index T->i [k] and column index T->j [k].
For a real triplet matrix, its numerical value is T->x [k]. For a complex triplet matrix, its
real part is T->x [2#k] and its imaginary part is T->x [2*k+1]. For a zomplex matrix, the
real part is T->x [k] and imaginary part is T->z [k]. The entries can be in any order, and
duplicates are permitted. See Section 14 for more details.

Each of the five objects has a routine in CHOLMOD to create and destroy it. CHOLMOD
provides many other operations on these objects as well. A few of the most important ones are
illustrated in the sample program in the next section.

3 Simple example program

#include "cholmod.h"
int main (void)

{

cholmod_sparse *A ;
cholmod_dense *x, *b, *r ;
cholmod_factor *L ;
double one [2] = {1,0}, m1 [2] = {-1,0} ; /* basic scalars */
cholmod_common c ;
cholmod_start (&c) ; /* start CHOLMOD */
A = cholmod_read_sparse (stdin, &c) ; /* read in a matrix */
cholmod_print_sparse (A, "A", &c) ; /* print the matrix */
if (A == NULL || A->stype == 0) /* A must be symmetric */
{

cholmod_free_sparse (&A, &c) ;

cholmod_finish (&c) ;

return (0) ;
}
b = cholmod_ones (A->nrow, 1, A->xtype, &c) ; /* b = ones(n,1) */
L = cholmod_analyze (A, &c) ; /* analyze */
cholmod_factorize (A, L, &c) ; /* factorize */
x = cholmod_solve (CHOLMOD_A, L, b, &c) ; /* solve Ax=b */
r = cholmod_copy_dense (b, &c) ; /*r =b *x/
cholmod_sdmult (A, O, ml, one, X, r, &c) ; /* r = r-Ax */
printf ("norm(b-Ax) ¥%8.1le\n",

cholmod_norm_dense (r, 0, &c)) ; /* print norm(r) */
cholmod_free_factor (&L, &c) ; /* free matrices */
cholmod_free_sparse (&A, &c) ;
cholmod_free_dense (&r, &c) ;
cholmod_free_dense (&x, &c) ;
cholmod_free_dense (&b, &c) ;
cholmod_finish (&c) ; /* finish CHOLMOD */
return (0) ;
}

Purpose: The Demo/cholmod_simple.c program illustrates the basic usage of CHOLMOD. It
reads a triplet matrix from a file (in Matrix Market format), converts it into a sparse matrix, creates
a linear system, solves it, and prints the norm of the residual.

See the CHOLMOD/Demo/cholmod _demo.c program for a more elaborate example, and
CHOLMOD/Demo/cholmod_1_demo.c for its long integer version.

10

4 Installation of the C-callable library

CHOLMOD requires a suite of external packages, many of which are distributed along with
CHOLMOD, but three of which are not. Those included with CHOLMOD are:

AMD: an approximate minimum degree ordering algorithm, by Tim Davis, Patrick Amestoy,
and Iain Duff [1, 2].

COLAMD: an approximate column minimum degree ordering algorithm, by Tim Davis, Stefan
Larimore, John Gilbert, and Esmond Ng [6, 7].

CCOLAMD: a constrained approximate column minimum degree ordering algorithm, by Tim
Davis and Siva Rajamanickam, based directly on COLAMD. This package is not required if
CHOLMOD is compiled with the ~-DNPARTITION flag.

CAMD: a constrained approximate minimum degree ordering algorithm, by Tim Davis and
Yanqing Chen, based directly on AMD. This package is not required if CHOLMOD is compiled
with the ~-DNPARTITION flag.

UFconfig: a single place where all sparse matrix packages authored or co-authored by Davis
are configured. Also includes a version of the xerbla routine for the BLAS.

Three other packages are required for optimal performance:

METIS 4.0.1: a graph partitioning package by George Karypis, Univ. of Minnesota. Not
needed if ~-DNPARTITION is used. See http://www-users.cs.umn.edu/~karypis/metis.

BLAS: the Basic Linear Algebra Subprograms. Not needed if ~-DNSUPERNODAL is used. See
http://www.netlib.org for the reference BLAS (not meant for production use). For Kazushige
Goto’s optimized BLAS (highly recommended for CHOLMOD) see
http://www.tacc.utexas.edu/~kgoto/ or http://www.cs.utexas.edu/users/flame/goto/. Irec-
ommend that you avoid the Intel MKL BLAS; one recent version returns NaN’s, where both
the Goto BLAS and the standard Fortran reference BLAS return the correct answer. See
CHOLMOD/README for more information.

LAPACK: the Basic Linear Algebra Subprograms. Not needed if -DNSUPERNODAL is used. See
http://www.netlib.org.

You must first obtain and install METIS, LAPACK, and the BLAS. Next edit the system-
dependent configurations in the UFconfig/UFconfig.mk file. Sample configurations are provided
for Linux, Macintosh, Sun Solaris, SGI IRIX, IBM AIX, and the DEC/Compaq Alpha. The most
important configuration is the location of the BLAS, LAPACK, and METIS packages, since in its
default configuration CHOLMOD cannot be compiled without them.

Here are the various parameters that you can control in your UFconfig/UFconfig.mk file:

CC = your C compiler, such as cc.

CFLAGS = optimization flags, such as -0.

RANLIB = your system’s ranlib program, if needed.
AR = the command to create a library (such as ar).

RM = the command to delete a file.

11

MV = the command to rename a file.

F77 = the command to compile a Fortran program (optional).
F77TFLAGS = the Fortran compiler flags (optional).

F77LIB = the Fortran libraries (optional).

LIB

basic libraries, such as -1m.

MEX = the command to compile a MATLAB mexFunction.

BLAS = your BLAS library.

LAPACK = your LAPACK library.

XERBLA = a library containing the BLAS xerbla routine, if required.
METIS_PATH = the path to your copy of the METIS 4.0.1 source code.
METIS = your METIS library.

CHOLMOD_CONFIG = configuration settings specific to CHOLMOD.

CHOLMOD’s specific settings are given by the CHOLMOD_CONFIG string;:

-DNCHECK: do not include the Check module. License: GNU LGPL.
-DNCHOLESKY: do not include the Cholesky module. License: GNU LGPL.
-DNPARTITION: do not include the Partition module. License: GNU LGPL.
-DNGPL: do not include any GNU GPL Modules in the CHOLMOD library.
-DNMATRIXOPS: do not include the MatrixOps module. License: GNU GPL.
-DNMODIFY: do not include the Modify module. License: GNU GPL.
-DNSUPERNODAL: do not include the Supernodal module. License: GNU GPL.
-DNPRINT: do not print anything.

-D’LONGBLAS=1long’ or -DLONGBLAS="1ong long’ defines the integers used by LAPACK and
the BLAS (defaults to int).

-DNSUNPERF: for Solaris only. If defined, do not use the Sun Performance Library.

-DNLARGEFILE: CHOLMOD now assumes support for large files (2GB or larger). If this
causes problems, you can compile CHOLMOD with -DNLARGEFILE. To use large files,
you should #include "cholmod.h" (or at least #include "cholmod io64.h") before any
other #include statements, in your application that uses CHOLMOD. You may need to use
fopen64 to create a file pointer to pass to CHOLMOD, if you are using a non-gcc compiler.

12

Type make in the CHOLMOD directory. The AMD, COLAMD, CAMD, CCOLAMD, and CHOLMOD
libraries will be compiled, as will the C version of the null-output xerbla routine in case you need
it. No Fortran compiler is required in this case. A short demo program will be compiled and
tested on a few matrices. The residuals should all be small. Compare your output with the
CHOLMOD/Demo/make . out file.

CHOLMOD is now ready for use in your own applications. You must link your programs with
the CHOLMOD/Lib/libcholmod.a, AMD/Lib/libamd.a, COLAMD/1libcolamd.a, CAMD/1libcamd. a,
CCOLAMD/libccolamd.a, metis-4.0/1libmetis.a, LAPACK, and BLAS libraries, as well as the
xerbla library if you need it (UFconfig/xerlib/libcerbla.a for the C version or
UFconfig/xerlib/libxerbla.a for the Fortran version). Your compiler needs to know the location
of the CHOLMOD Include directory, so that it can find the cholmod.h include file, by adding the
-ICHOLMOD/Include to your C compiler options (modified appropriately to reflect the location of
your copy of CHOLMOD).

13

5 Using CHOLMOD in MATLAB

CHOLMOD includes a set of m-files and mexFunctions in the CHOLMOD/MATLAB directory.
The following functions are provided:

analyze order and analyze a matrix

bisect find a node separator

chol?2 same as chol

cholmod2 same as x=A\Db if A is symmetric positive definite

cholmod_demo

a short demo program

cholmod make compiles CHOLMOD for use in MATLAB
etree2 same as etree

graph_demo graph partitioning demo

1lchol L*L’ factorization

ldlchol LxDxL’ factorization

1dl normest estimate norm(A-L*D*L’)

ldlsolve x = L’\(D\(L\b))

1ldlsplit split the output of 1dlchol into L and D
ldlupdate update/downdate an LxD*L’ factorization
metis interface to METIS _NodeND ordering

mread read a sparse or dense Matrix Market file
mwrite write a sparse or dense Matrix Market file
nesdis CHOLMOD’s nested dissection ordering
resymbol recomputes the symbolic factorization
sdmult S*F where S is sparse and F is dense
Spsym determine symmetry

sparse?2 same as sparse

symbfact2 same as symbfact

Each function is described in the next sections.

14

5.1 analyze: order and analyze

ANALYZE order and analyze a matrix using CHOLMOD’s best-effort ordering.

Example:

[p
[p
p

count] =
count] =
count] =
count] =

optional
count]

count] =
count] =

Returns a p
column of L for the permuted matrix A.

count =
count =
count =

analyze (A) orders
analyze (A,’sym’) orders
analyze (A,’row’) orders
analyze (A,’col’) orders

3rd parameter modifies the

= analyze (A,’sym’,k) orders

analyze (A,’row’,k) orders
analyze (A,’col’,k) orders

ermutation and the count of

A, using just tril(A)
A, using just tril(A)
AxA’
A’ xA

ordering strategy:

A, using just tril(A)
AxA’

A’ xA

the number of nonzeros in each
That is, count is returned as:

symbfact2 (A (p,p)) if ordering A
symbfact2 (A (p,:),’row’) if ordering A*A’
symbfact2 (A (:,p),’col’) if ordering A’*A

CHOLMOD uses the following ordering strategy:

k =0:

orde

Try AMD. If that ordering gives a flop count >= 500 * nnz(L)
and a fill-in of nnz(L) >= 5*nnz(C), then try METIS_NodeND (where

C = A, AxA’, or A’*A is the matrix being ordered. Selects the best
ring tried. This is the default.

if k > 0, then multiple orderings are attempted.

k=1o0
k = 3:
k =4:
de
k=5
k=6
k=7:
k =8
k=09
k>9 i
k= -1:
k = -2:
k = -3:

r 2: just try AMD
also try METIS_NodeND

also try NESDIS, CHOLMOD’s nested dissection (NESDIS), with
fault parameters. Uses METIS’s node bisector and CCOLAMD.

: also try the natural ordering (p = 1:n)
: also try NESDIS with large leaves of the separator tree

also try NESDIS with tiny leaves and no CCOLAMD ordering

s treated as k = 9

just use AMD
just use METIS
just use NESDIS

: also try NESDIS with no dense-node removal
: also try COLAMD if ordering A’*A or AxA’, (AMD if ordering A).

The method returning the smallest nnz(L) is used for p and count.

k = 4 takes much longer than (say) k = O, but it can reduce nnz(L) by
al 5% to 10%. k =5 to 9 is getting extreme, but if you have
lots of time and want to find the best ordering possible, set k = 9.

a typic

If METIS is not installed for use in CHOLMOD, then the strategy is
different:

1t

9:
>9 1

WO OR R

o 4: just try AMD

= 5 to 8: also try the natural ordering (p = 1:n)

also try COLAMD if ordering A’*A or A*A’, (AMD if ordering A).

s treated as k = 9

15

See also METIS, NESDIS, BISECT, SYMBFACT, AMD
Copyright 2006-2007, Timothy A. Davis
http://wuw.cise.ufl.edu/research/sparse

5.2 Dbisect: find a node separator

BISECT computes a node separator based on METIS_NodeComputeSeparator.

Example:

s = bisect(4) bisects A. Uses tril(A) and assumes A is symmetric.
s = bisect(A,’sym’) the same as p=bisect(A).

s = bisect(A,’col’) bisects A’*A.

s = bisect(A,’row’) bisects AxA’.

A must be square for p=bisect(A) and bisect(A,’sym’).

s is a vector of length equal to the dimension of A, A’*A, or Ax*A’,
depending on the matrix bisected. s(i)=0 if node i is in the left subgraph,
s(i)=1 if it is in the right subgraph, and s(i)=2 if node i is in the node
separator.

Requires METIS, authored by George Karypis, Univ. of Minnesota. This
MATLAB interface, via CHOLMOD, is by Tim Davis.

See also METIS, NESDIS
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

5.3 chol2: same as chol

CHOL2 sparse Cholesky factorization, A=R’R.
Note that A=L*L’ (LCHOL) and A=L*D*L’ (LDLCHOL) factorizations are faster
than R’*R (CHOL2 and CHOL) and use less memory. The LL’ and LDL’
factorization methods use tril(A). This method uses triu(A), just like
the built-in CHOL.

Example:

R = chol2 (A) same as R = chol (A), just faster

[R,p] = chol2 (&) save as [R,p] = chol(A), just faster
[R,p,q] = chol2 (A) factorizes A(q,q) into R’*R, where q is

a fill-reducing ordering
A must be sparse.
See also LCHOL, LDLCHOL, CHOL, LDLUPDATE.

Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

16

5.4 cholmod2: supernodal backslash

CHOLMOD2 supernodal sparse Cholesky backslash, x = A\b

Example:
x = cholmod2 (A,b)

Computes the LL’ factorization of A(p,p), where p is a fill-reducing
ordering, then solves a sparse linear system Ax=b. A must be sparse,
symmetric, and positive definite). Uses only the upper triangular part
of A. A second output, [x,stats]=cholmod2(A,b), returns statistics:

stats(1) estimate of the reciprocal of the condition number

stats(2) ordering used:
0: natural, 1: given, 2:amd, 3:metis, 4:nesdis,
5:colamd, 6: natural but postordered.

stats(3) nnz (L)

stats(4) flop count in Cholesky factorization. Excludes solution
of upper/lower triangular systems, which can be easily
computed from stats(3) (roughly 4+*nnz(L)*size(b,2)).

stats(5) memory usage in MB.

The 3rd argument select the ordering method to use. If not present or -1,
the default ordering strategy is used (AMD, and then try METIS if AMD finds
an ordering with high fill-in, and use the best method tried).

Other options for the ordering parameter:

0 natural (no etree postordering)

-1 wuse CHOLMOD’s default ordering strategy (AMD, then try METIS)
-2 AMD, and then try NESDIS (not METIS) if AMD has high fill-in
-3 wuse AMD only

-4 use METIS only

-5 use NESDIS only

-6 natural, but with etree postordering

p user permutation (vector of size n, with a permutation of 1:n)

See also CHOL, MLDIVIDE.
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

17

5.5 cholmod demo: a short demo program

CHOLMOD_DEMO a demo for CHOLMOD

Tests CHOLMOD with various randomly-generated matrices, and the west0479
matrix distributed with MATLAB. Random matrices are not good test cases,
but they are easily generated. It also compares CHOLMOD and MATLAB on the
sparse matrix problem used in the MATLAB BENCH command.

See CHOLMOD/MATLAB/Test/test_all.m for a lengthy test using matrices from
the UF sparse matrix collection.

Example:
cholmod_demo

See also BENCH
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse
try_matrix: try a matrix with CHOLMOD

5.6 cholmod make: compile CHOLMOD in MATLAB

CHOLMOD_MAKE compiles the CHOLMOD mexFunctions

Example:
cholmod_make

CHOLMOD relies on AMD and COLAMD, and optionally CCOLAMD, CAMD, and METIS.
A1l but METIS are distributed with CHOLMOD. To compile CHOLMOD to use METIS
you must first place a copy of the metis-4.0 directory (METIS version 4.0.1)
in same directory that contains the AMD, COLAMD, CCOLAMD, and CHOLMOD
directories. Next, type

cholmod_make
in the MATLAB command window. Alternatively, use this command:
cholmod_make (’path to your copy of metis-4.0 here’) ;

See http://www-users.cs.umn.edu/ karypis/metis for a copy of
METIS 4.0.1. If you do not have METIS, use either of the following:

cholmod_make (’’)
cholmod_make (’no metis’)

You must type the cholmod_make command while in the CHOLMOD/MATLAB directory.

See also analyze, bisect, chol2, cholmod2, etree2, lchol, ldlchol, ldlsolve,
ldlupdate, metis, spsym, nesdis, septree, resymbol, sdmult, sparse2,
symbfact2, mread, mwrite
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

Determine the METIS path, and whether or not METIS is available

fix the METIS 4.0.1 rename.h file

BLAS option

18

This is exceedingly ugly. The MATLAB mex command needs to be told where to
fine the LAPACK and BLAS libraries, which is a real portability nightmare.

compile each library source file
compile each mexFunction
clean up

DO_CMD: evaluate a command, and either print it or print a "."

determine the MATLAB version, and return it as a double.
only the primary and secondary version numbers are kept.
MATLAB 7.0.4 becomes 7.0, version 6.5.2 becomes 6.5, etc.

19

5.7

etree2: same as etree

ETREE2 sparse elimination tree.

Finds the elimination tree of A, A’*A, or A*A’, and optionaly postorders
the tree. parent(j) is the parent of node j in the tree, or 0 if j is a
root. The symmetric case uses only the upper or lower triangular part of
A (etree2(A) uses the upper part, and etree2(A,’lo’) uses the lower part).

Example:

parent = etree2 (A) finds the elimination tree of A, using triu(A)
parent = etree2 (A,’sym’) same as etree2(4)

parent = etree2 (A,’col’) finds the elimination tree of A’*A

parent = etree2 (A,’row’) finds the elimination tree of A*A’

parent = etree2 (A,’lo’) finds the elimination tree of A, using tril(A)

[parent,post] = etree2 (...) also returns a post-ordering of the tree.

If you have a fill-reducing permutation p, you can combine it with an
elimination tree post-ordering using the following code. Post-ordering has
no effect on fill-in (except for lu), but it does improve the performance
of the subsequent factorization.

For the symmetric case, suitable for chol(A(p,p)):

[parent post] = etree2 (A (p,p)) ;
p = p (post) ;

For the column case, suitable for qr(A(:,p)) or lu(A(:,p)):

[parent post] = etree2 (A (:,p), ’col’) ;
p =p (post) ;

For the row case, suitable for qr(A(p,:)’) or chol(A(p,:)*A(p,:)’):

[parent post] = etree2 (A (p,:), ’row’) ;
p = p (post) ;

See also TREELAYOUT, TREEPLOT, ETREEPLOT, ETREE
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

5.8 graph demo: graph partitioning demo

GRAPH_DEMO graph partitioning demo

graph_demo(n) constructs an set of n-by-n 2D grids, partitions them, and
plots them in one-second intervals. n is optional; it defaults to 60.

Example:
graph_demo

See also DELSQ, NUMGRID, GPLOT, TREEPLOT
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

my_gplot : like gplot, just a lot faster

20

21

5.9 1chol: LLT factorization

LCHOL sparse A=LxL’ factorization.
Note that L*L’> (LCHOL) and L*D*L’ (LDLCHOL) factorizations are faster than
R’*R (CHOL2 and CHOL) and use less memory. The LL’ and LDL’ factorization
methods use tril(A). A must be sparse.

Example:

L = 1chol (A) same as L = chol (A’)’, just faster

[L,p] = lchol (A) save as [R,p] = chol(A’) ; L=R’, just faster
[L,p,q] = 1lchol (&) factorizes A(q,q) into L*L’, where q is a

fill-reducing ordering

See also CHOL2, LDLCHOL, CHOL.
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

5.10 1dlchol: LDL' factorization

LDLCHOL sparse A=LDL’ factorization
Note that L*L’ (LCHOL) and L*D*L’ (LDLCHOL) factorizations are faster than
R’*R (CHOL2 and CHOL) and use less memory. The LL’ and LDL’ factorization
methods use tril(A). A must be sparse.

Example:

LD = 1ldlchol (A) return the LDL’ factorization of A

[LD,p] = 1dlchol (A) similar [R,p] = chol(A), but for L*D*L’

[LD,p,q] = 1dlchol (A) factorizes A(q,q) into L*D*L’, where q is a
fill-reducing ordering

LD = 1dlchol (A,beta) return the LDL’ factorization of A*A’+betaxI

[LD,p] = 1dlchol (A,beta) like [R,p] = chol(A*A’+beta+I)
[LD,p,q] = 1ldlchol (A,beta) factorizes A(q,:)*A(q,:)’+beta*l into L*DxL’

The output matrix LD contains both L and D. D is on the diagonal of LD, and
L is contained in the strictly lower triangular part of LD. The unit-
diagonal of L is not stored. You can obtain the L and D matrices with

[L,D] = 1dlsplit (LD). LD is in the form needed by ldlupdate.

Explicit zeros may appear in the LD matrix. The pattern of LD matches the
pattern of L as computed by symbfact2, even if some entries in LD are
explicitly zero. This is to ensure that ldlupdate and ldlsolve work
properly. You must NOT modify LD in MATLAB itself and then use ldlupdate
or ldlsolve if LD contains explicit zero entries; ldlupdate and ldlsolve
will fail catastrophically in this case.

You MAY modify LD in MATLAB if you do not pass it back to ldlupdate or
ldlsolve. Just be aware that LD contains explicit zero entries, contrary
to the standard practice in MATLAB of removing those entries from all
sparse matrices. LD = sparse2 (LD) will remove any zero entries in LD.

See also LDLUPDATE, LDLSOLVE, LDLSPLIT, CHOL2, LCHOL, CHOL, SPARSE2
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

22

5.11 1dlsolve: solve using an LDL" factorization

LDLSOLVE solve LDL’x=b using a sparse LDL’ factorization

Example:
x = ldlsolve (LD,b)

solves the system L*D*L’*x=b for x. This is equivalent to

[L,D] = 1dlsplit (LD) ;
x=L>\ O\ @\ b)) ;

LD is from ldlchol, or as updated by ldlupdate. You must not modify LD as
obtained from ldlchol or ldlupdate prior to passing it to this function.
See ldlupdate for more details.

See also LDLCHOL, LDLUPDATE, LDLSPLIT
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

5.12 1dlsplit: split an LDL' factorization

LDLSPLIT split an LDL’ factorization into L and D.

Example:
[L,D] = ldlsplit (LD)

LD contains an LDL’ factorization, computed with LD = 1dlchol(A),
for example. The diagonal of LD contains D, and the entries below
the diagonal contain L (which has a unit diagonal). This function
splits LD into its two components L and D so that L*D*L’ = A.

See also LDLCHOL, LDLSOLVE, LDLUPDATE.
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

23

5.13 1dlupdate: update/downdate an LDL' factorization

LDLUPDATE multiple-rank update or downdate of a sparse LDL’ factorization.

On input, LD contains the LDL’ factorization of A (L*D*L’=A or A(q,q)).
The unit-diagonal of L is not stored. 1In its place is the diagonal matrix
D. LD can be computed using the CHOLMOD mexFunctions:

LD = 1dlchol (A) ;
or
[LD,p,q] = 1dlchol (&) ;

With this LD, either of the following MATLAB statements,
Example:

LD = 1dlupdate (LD,C)
LD = 1ldlupdate (LD,C,’+’)

return the LDL’ factorization of A+C*C’ or A(q,q)-C*C’ if LD holds the LDL’
factorization of A(q,q) on input. For a downdate:

LD = ldlupdate (LD,C,’-’)
returns the LDL’ factorization of A-C*C’ or A(q,q)-C*C’.

LD and C must be sparse and real. LD must be square, and C must have the
same number of rows as LD. You must not modify LD in MATLAB (see the
WARNING below).

Note that if C is sparse with few columns, most of the time spent in this
routine is taken by copying the input LD to the output LD. If MATLAB
allowed mexFunctions to safely modify its inputs, this mexFunction would
be much faster, since not all of LD changes.

See also LDLCHOL, LDLSPLIT, LDLSOLVE, CHOLUPDATE

WARNING

MATLAB drops zero entries from its sparse matrices. LD can contain
numerically zero entries that are symbolically present in the sparse matrix
data structure. These are essential for ldlupdate and ldlsolve to work
properly, since they exploit the graph-theoretic structure of a sparse
Cholesky factorization. If you modify LD in MATLAB, those zero entries may
get dropped and the required graph property will be destroyed. In this
case, ldlupdate and ldlsolve will fail catastrophically (possibly with a
segmentation fault, terminating MATLAB). It takes much more time to ensure
this property holds than the time it takes to do the update/downdate or the
solve, so ldlupdate and ldlsolve simply assume the propertly holds.

Copyright 2006-2007, Timothy A. Davis, William W. Hager
http://www.cise.ufl.edu/research/sparse

24

5.14 mread: read a sparse or dense matrix from a Matrix Market file

MREAD read a sparse matrix from a file in Matrix Market format.

Example:
A = mread (filename)
[A Z] = mread (filename, prefer_binary)

Unlike MMREAD, only the matrix is returned; the file format is not
returned. Explicit zero entries can be present in the file; these are not
included in A. They appear as the nonzero pattern of the binary matrix Z.

If prefer_binary is not present, or zero, a symmetric pattern-only matrix

is returned with A(i,i) = 1+length(find(A(:,i))) if it is present in the
pattern, and A(i,j) = -1 for off-diagonal entries. If you want the original
Matrix Market matrix in this case, simply use A = mread (filename,1).

Compare with mmread.m at http://math.nist.gov/MatrixMarket
See also load

Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

5.15 mwrite: write a sparse or densematrix to a Matrix Market file

MWRITE write a matrix to a file in Matrix Market form.

Example:
mtype = mwrite (filename, A, Z, comments_filename)

A can be sparse or full.

If present and non-empty, A and Z must have the same dimension. Z contains
the explicit zero entries in the matrix (which MATLAB drops). The entries
of Z appear as explicit zeros in the output file. Z is optional. If it is
an empty matrix it is ignored. Z must be sparse or empty, if present.

It is ignored if A is full.

filename is the name of the output file. comments_filename is the file
whose contents are include after the Matrix Market header and before the
first data line. Ignored if an empty string or not present.

See also mread.
Copyright 2006-2007, Timothy A. Davis

25

5.16 metis: order with METIS

METIS nested dissection ordering via METIS_NodeND.

Example:
p = metis(A) returns p such chol(A(p,p)) is typically sparser than
chol(A). Uses tril(A) and assumes A is symmetric.

p = metis(A,’sym’) the same as p=metis(A).

p = metis(A,’col’) returns p so that chol(A(:,p)’*A(:,p)) is typically
sparser than chol(A’*A).

p = metis(A,’row’) returns p so that chol(A(p,:)*A(p,:)’) is typically

sparser than chol(A’*A).
A must be square for p=metis(A) or metis(A,’sym’)

Requires METIS, authored by George Karypis, Univ. of Minnesota. This
MATLAB interface, via CHOLMOD, is by Tim Davis.

See also NESDIS, BISECT
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

26

5.17 nesdis: order with CHOLMOD nested dissection

NESDIS nested dissection ordering via CHOLMOD’s nested dissection.

Example:

p = nesdis(4) returns p such chol(A(p,p)) is typically sparser than
chol(A). Uses tril(A) and assumes A is symmetric.

p = nesdis(A,’sym’) the same as p=nesdis(A).

p = nesdis(A,’col’) returns p so that chol(A(:,p)’*A(:,p)) is typically
sparser than chol(A’*A).

p = nesdis(A,’row’) returns p so that chol(A(p,:)*A(p,:)’) is typically

sparser than chol(A’*A).
A must be square for p=nesdis(A) or nesdis(A,’sym’).

With three output arguments, [p cp cmember] = nesdis(...), the separator
tree and node-to-component mapping is returned. cmember(i)=c means that
node i is in component c, where c is in the range of 1 to the number of
components. length(cp) is the number of components found. cp is the
separator tree; cp(c) is the parent of component c, or O if c is a root.
There can be anywhere from 1 to n components, where n is dimension of A,
AxA’, or A’*A. cmember is a vector of length n.

An optional 3rd input argument, nesdis (A,mode,opts), modifies the default
parameters. opts(l) specifies the smallest subgraph that should not be
partitioned (default is 200). opts(2) is O by default; if nonzero,
connected components (formed after the node separator is removed) are
partitioned independently. The default value tends to lead to a more
balanced separator tree, cp. opts(3) defines when a separator is kept; it
is kept if the separator size is < opts(3) times the number of nodes in the
graph being cut (valid range is O to 1, default is 1).

opts(4) specifies graph is to be ordered after it is dissected. For the
’sym’ case: O: natural ordering, 1: CAMD, 2: CSYMAMD. For other cases:
0: natural ordering, nonzero: CCOLAMD. The default is 1, to use CAMD for
the symmetric case and CCOLAMD for the other cases.

If opts is shorter than length 4, defaults are used for entries
that are not present.

NESDIS uses METIS’ node separator algorithm to recursively partition the
graph. This gives a set of constraints (cmember) that is then passed to
CCOLAMD, CSYMAMD, or CAMD, constrained minimum degree ordering algorithms.
NESDIS typically takes slightly more time than METIS (METIS_NodeND), but
tends to produce better orderings.

Requires METIS, authored by George Karypis, Univ. of Minnesota. This
MATLAB interface, via CHOLMOD, is by Tim Davis.

See also METIS, BISECT, AMD
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

27

5.18 resymbol: re-do symbolic factorization

RESYMBOL recomputes the symbolic Cholesky factorization of the matrix A.

Example:
L = resymbol (L, A)

Recompute the symbolic Cholesky factorization of the matrix A. A must be
symmetric. Only tril(A) is used. Entries in L that are not in the Cholesky
factorization of A are removed from L. L can be from an LL’ or LDL’
factorization (lchol or 1ldlchol). resymbol is useful after a series of
downdates via ldlupdate, since downdates do not remove any entries in L.

The numerical values of A are ignored; only its nonzero pattern is used.

See also LCHOL, LDLUPDATE
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

5.19 sdmult: sparse matrix times dense matrix

SDMULT sparse matrix times dense matrix
Compute C = S*F or S’*F where S is sparse and F is full (C is also sparse).
S and F must both be real or both be complex. This function is
substantially faster than the MATLAB expression C=S*F when F has many

columns.

Example:
C = sdmult (S,F) ; C = S*F
C = sdmult (S,F,0) ; C = SxF
C = sdmult (S,F,1) ; C = S’%F

See also MTIMES
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

28

5.20 spsym: determine symmetry

SPSYM determine if a sparse matrix is symmetric, Hermitian, or skew-symmetric.
If so, also determine if its diagonal has all positive real entries.
A must be sparse.

Example:
result = spsym (A) ;
result = spsym (A,quick) ;

If quick = 0, or is not present, then this routine returns:

1: if A is rectangular

2: if A is unsymmetric

3: if A is symmetric, but with one or more A(j,j) <= 0

4: if A is Hermitian, but with one or more A(j,j) <= O or with
nonzero imaginary part

5: if A is skew symmetric (and thus the diagonal is all zero as well)

6: if A is symmetric with real positive diagonal

7: if A is Hermitian with real positive diagonal

If quick is nonzero, then the function can return more quickly, as soon as
it finds a diagonal entry that is <= O or with a nonzero imaginary part. 1In
this case, it returns 1, even if the matrix might otherwise be symmetric or
Hermitian.

Regardless of the value of "quick", this function returns 6 or 7 if A is
a candidate for sparse Cholesky.

For an MATLAB M-file function that computes the same thing as this
mexFunction (but much slower), see the get_symmetry function by typing

"type spsym".

This spsym function does not compute the transpose of A, nor does it need
to examine the entire matrix if it is unsymmetric. It uses very little
memory as well (just size-n workspace, where n = size (A,1)).

Examples:
load west0479
A = west0479 ;
spsym (A)
spsym (A+A’)
spsym (A-A’)
spsym (A+A’+3*speye(size(A,1)))

See also mldivide.
function result = get_symmetry (A,quick)
%GET_SYMMETRY: does the same thing as the spsym mexFunction.
% It’s just a lot slower and uses much more memory. This function
% is meant for testing and documentation only.
[m n] = size (A) ;

if (m "= n)
result = 1 ; % rectangular
return

end

if (nargin < 2)
quick = 0 ;

end

d = diag (4) ;

29

posdiag = all (real (d) > 0) & all (imag (d) == 0) ;
if (quick & “posdiag)
result = 2 ; % Not a candidate for sparse Cholesky.
elseif (“isreal (A) & nnz (A-A’) == 0)
if (posdiag)
result = 7 ; % complex Hermitian, with positive diagonal
else
result = 4 ; % complex Hermitian, nonpositive diagonal
end
elseif (nnz (A-A.’) == 0)
if (posdiag)

result = 6 ; % symmetric with positive diagonal
else
result = 3 ; % symmetric, nonpositive diagonal
end
elseif (nnz (A+A.’) == 0)
result = 5 ; % skew symmetric
else
result = 2 ; % unsymmetric

end
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

30

5.21

sparseQ: sarmme as sparse

SPARSE2 replacement for SPARSE

Example:
S = sparse2 (i,j,s,m,n,nzmax)

Identical to the MATLAB sparse function (just faster).
An additional feature is added that is not part of the MATLAB sparse
function, the Z matrix. With an extra output,

[S Z] = sparse2 (i,j,s,m,n,nzmax)

the matrix Z is a binary real matrix whose nonzero pattern contains the
explicit zero entries that were dropped from S. Z only contains entries
for the sparse2(i,j,s,...) usage. [S Z]=sparse2(X) where X is full always
returns Z with nnz(Z) = 0, as does [S Z]=sparse2(m,n). More precisely,

Z is the following matrix (where ... means the optional m, n, and nzmax
parameters).

S = sparse (i,j,s, ...)

Z = spones (sparse (i,j,1, ...)) - spones (8)

See also sparse.
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

31

5.22

symbfact2: same as symbfact

SYMBFACT2 symbolic factorization

Analyzes the Cholesky factorization of A, A’*A, or AxA’.

Example:

count = symbfact2 (A) returns row counts of R=chol(A)
count = symbfact2 (A,’col’) returns row counts of R=chol(A’x*A)
count = symbfact2 (A,’sym’) same as symbfact2(A)

count = symbfact2 (A,’lo’) same as symbfact2(A’), uses tril(4)
count = symbfact2 (A,’row’) returns row counts of R=chol(A*A’)

The flop count for a subsequent LL’ factorization is sum(count."2)
[count, h, parent, post, R] = symbfact2 (...) returns:

h: height of the elimination tree

parent: the elimination tree itself

post: postordering of the elimination tree

R: a 0-1 matrix whose structure is that of chol(A) for the symmetric
case, chol(A’*A) for the ’col’ case, or chol(A*A’) for the
’row’ case.

symbfact2(A) and symbfact2(A,’sym’) uses the upper triangular part of A
(triu(A)) and assumes the lower triangular part is the transpose of
the upper triangular part. symbfact2(A,’lo’) uses tril(A) instead.

With one to four output arguments, symbfact2 takes time almost proportional
to nnz(A)+n where n is the dimension of R, and memory proportional to
nnz(A). Computing the 5th argument takes more time and memory, both
0(nnz(L)). Internally, the pattern of L is computed and R=L’ is returned.

The following forms return L = R’ instead of R. They are faster and take
less memory than the forms above. They return the same count, h, parent,
and post outputs.

[count, h, parent, post, L] = symbfact2 (A,’col’,’L’)
[count, h, parent, post, L] = symbfact2 (A,’sym’,’L’)
[count, h, parent, post, L] = symbfact2 (A,’lo’, ’L’)
[count, h, parent, post, L] = symbfact2 (A,’row’,’L’)

See also CHOL, ETREE, TREELAYOUT, SYMBFACT
Copyright 2006-2007, Timothy A. Davis
http://www.cise.ufl.edu/research/sparse

32

6 Installation for use in MATLAB

If you wish to use METIS within CHOLMOD, you should first obtain a copy of METIS 4.0.1. See
http://www-users.cs.umn.edu/~karypis/metis. Place your copy of the metis-4.0 directory (folder,
for Windows users) in the same directory that contains your copy of the CHOLMOD directory. If you
do not have METIS, however, you can still use CHOLMOD. Some of the CHOLMOD functions
will not be available (metis, bisect, and nesdis), and you may experience higher fill-in for large
matrices (particularly those arising in 3D finite-element problems) when using analyze, chol2,
cholmod2, 1chol, and 1dlchol. There are two methods for compiling CHOLMOD for use in
MATLAB; both are described below.

6.1 cholmod make: compiling CHOLMOD in MATLAB

This is the preferred method, since it allows METIS to be reconfigured to use the MATLAB
memory-management functions instead of malloc and free; this avoids the issue of METIS termi-
nating MATLAB if it runs out of memory. It is also simpler for Windows users, who do not have
the make command (unless you obtain a copy of Cygwin).

Start MATLAB, cd to the CHOLMOD/MATLAB directory, and type cholmod make in the MATLAB
command window. This will compile the MATLAB interfaces for AMD, COLAMD, CAMD, CCO-
LAMD, METIS, and CHOLMOD. If you do not have METIS, type cholmod make(’’). If your
copy of METIS is in another location, type cholmod make (’path’) where path is the pathname
of your copy of the metis-4.0 directory.

When METIS is compiled malloc, free, calloc, and realloc are redefined to the MATLAB-
equivalents (mxMalloc, ...). These memory-management functions safely terminate a mexFunction
if they fail, and will free all memory allocated by the mexFunction. Thus, METIS will safely
abort without terminating MATLAB, if it runs out of memory. The cholmod_make handles this
redefinition without making any changes to your METIS source code.

6.2 Unix make for compiling CHOLMOD

You can also compile the CHOLMOD mexFunctions using the Unix/Linux make command. When
using the gce compiler, I strongly recommend editing the metis-4.0/Makefile.in file and chang-
ing COPTIONS to

COPTIONS = -fexceptions

Also ensure -fexceptions is in the CFLAGS option in the UFconfig/UFconfig.mk file that comes
with CHOLMOD. If you do not make these modifications, the CHOLMOD mexFunctions will
terminate MATLAB if they encounter an error.

If you have MATLAB 7.2 or earlier and use make mex in the CHOLMOD directory (equivalently,
make in CHOLMOD/MATLAB), you must first edit UFconfig/UFconfig.h to remove the -largeArrayDims
option from the MEX command (or just use cholmod make.m inside MATLAB).

Next, compile your METIS 4.0.1 library by typing make in the metis-4.0 directory. Then
type make in the CHOLMOD/MATLAB directory. This will compile the C-callable libraries for AMD,
COLAMD, CAMD, CCOLAMD, METIS, and CHOLMOD, and then compile the mexFunction
interfaces to those libraries. If METIS tries malloc and encounters an out-of-memory condition,
it calls abort, which will terminate MATLAB. This problem does not occur using the method
described in the previous section.

33

7 Integer and floating-point types, and notation used

CHOLMOD supports both int and long integers. CHOLMOD routines with the prefix cholmod_
use int integers, cholmod_1_ routines use long. All floating-point values are double.

The long integer is redefinable, via UFconfig.h. That file defines a C preprocessor token
UF_long which is long on all systems except for Windows-64, in which case it is defined as __int64.
The intent is that with suitable compile-time switches, int is a 32-bit integer and UF_long is a
64-bit integer. The term long is used to describe the latter integer throughout this document
(except in the prototypes).

Two kinds of complex matrices are supported: complex and zomplex. A complex matrix is held
in a manner that is compatible with the Fortran and ANSI C99 complex data type. A complex
array of size n is a double array x of size 2*n, with the real and imaginary parts interleaved (the
real part comes first, as a double, followed the imaginary part, also as a double. Thus, the real
part of the kth entry is x[2*k] and the imaginary part is x[2*k+1].

A zomplex matrix of size n stores its real part in one double array of size n called x and its
imaginary part in another double array of size n called z (thus the name “zomplex”). This also how
MATLAB stores its complex matrices. The real part of the kth entry is x[k] and the imaginary
part is z[k].

Unlike UMFPACK, the same routine name in CHOLMOD is used for pattern-only, real, complex,
and zomplex matrices. For example, the statement

C = cholmod_copy_sparse (A, &Common) ;

creates a copy of a pattern, real, complex, or zomplex sparse matrix A. The xtype (pattern, real,
complex, or zomplex) of the resulting sparse matrix C is the same as A (a pattern-only sparse matrix
contains no floating-point values). In the above case, C and A use int integers. For long integers,
the statement would become:

C = cholmod_1_copy_sparse (A, &Common) ;

The last parameter of all CHOLMOD routines is always &Common, a pointer to the cholmod_common
object, which contains parameters, statistics, and workspace used throughout CHOLMOD.

The xtype of a CHOLMOD object (sparse matrix, triplet matrix, dense matrix, or factorization)
determines whether it is pattern-only, real, complex, or zomplex.

The names of the int versions are primarily used in this document. To obtain the name of the
long version of the same routine, simply replace cholmod_ with cholmod 1_.

MATLAB matrix notation is used throughout this document and in the comments in the
CHOLMOD code itself. If you are not familiar with MATLAB, here is a short introduction to
the notation, and a few minor variations used in CHOLMOD:

e C=A+B and C=AxB, respectively are a matrix add and multiply if both A and B are matrices of
appropriate size. If A is a scalar, then it is added to or multiplied with every entry in B.

e a:b where a and b are integers refers to the sequence a, a+1, ... b.
e [A B] and [A,B] are the horizontal concatenation of A and B.

e [A;B] is the vertical concatenation of A and B.

34

A(i,j) can refer either to a scalar or a submatrix. For example:

ACl1,1) a scalar.
AC:,) column j of A.
AGL,) row i of A.

AC[1 2], [1 2]) a 2-by-2 matrix containing the 2-by-2 leading minor of A.
If p is a permutation of 1:n, and A is n-by-n, then A(p,p) corresponds to the permuted

matrix PAPT.

tril(A) is the lower triangular part of A, including the diagonal.

tril (A,k) is the lower triangular part of A, including entries on and below the kth diagonal.
triu(A) is the upper triangular part of A, including the diagonal.

triu(A,k) is the upper triangular part of A, including entries on and above the kth diagonal.
size(A) returns the dimensions of A.

find(x) if x is a vector returns a list of indices i for which x (i) is nonzero.

A’ is the transpose of A if A is real, or the complex conjugate transpose if A is complex.

A .’ is the array transpose of A.

diag(A) is the diagonal of A if A is a matrix.

C=diag(s) is a diagonal matrix if s is a vector, with the values of s on the diagonal of C.
S=spones (A) returns a binary matrix S with the same nonzero pattern of A.

nnz (A) is the number of nonzero entries in A.

Variations to MATLAB notation used in this document:

CHOLMOD uses 0-based notation (the first entry in the matrix is A(0,0)). MATLAB is
1-based. The context is usually clear.

I is the identity matrix.

A(:,f), where £ is a set of columns, is interpreted differently in CHOLMOD, but just for the
set named f. See cholmod_transpose_unsym for details.

35

8 The CHOLMOD Modules, objects, and functions

CHOLMOD contains a total of 133 int-based routines (and the same number of long routines),
divided into a set of inter-related Modules. Each Module contains a set of related functions. The
functions are divided into two types: Primary and Secondary, to reflect how a user will typically
use CHOLMOD. Most users will find the Primary routines to be sufficient to use CHOLMOD in
their programs. Each Module exists as a sub-directory (a folder for Windows users) within the
CHOLMOD directory (or folder).

There are seven Modules that provide user-callable routines for CHOLMOD.
1. Core: basic data structures and definitions
2. Check: prints/checks each of CHOLMOD'’s objects
3. Cholesky: sparse Cholesky factorization
4. Modify: sparse Cholesky update/downdate and row-add/row-delete
5. MatrixOps: sparse matrix operators (add, multiply, norm, scale)
6. Supernodal: supernodal sparse Cholesky factorization
7. Partition: graph-partitioning-based orderings
Two additional Modules are required to compile the CHOLMOD library:
1. Include: include files for CHOLMOD and programs that use CHOLMOD
2. Lib: where the CHOLMOD library is built
Five additional Modules provide support functions and documentation:
1. Demo: simple programs that illustrate the use of CHOLMOD
2. Doc: documentation (including this document)
3. MATLAB: CHOLMOD'’s interface to MATLAB
4. Tcov: an exhaustive test coverage (requires Linux or Solaris)
5. Valgrind: runs the Tcov test under valgrind (requires Linux)

The following Modules are licensed under the GNU Lesser General Public License: Check,
Cholesky, Core, and Partition. The following Modules are licensed under the GNU General
Public License: Demo, Modify, MatrixOps, Supernodal, the MATLAB Module (not MATLARB itself!),
Tcov, and Valgrind. The files in the Include Module are licensed according to their respective
Modules. The Lib and Doc Modules need no license; the compiled binaries are licensed the same
as their source code.

36

8.1 Core Module: basic data structures and definitions

CHOLMOD includes five basic objects, defined in the Core Module. The Core Module provides
basic operations for these objects and is required by all six other CHOLMOD library Modules:

8.1.1 cholmod_common: parameters, statistics, and workspace

You must call cholmod_start before calling any other CHOLMOD routine, and you must call
cholmod finish as your last call to CHOLMOD (with the exception of cholmod print_common
and cholmod_check_common in the Check Module). Once the cholmod_common object is initial-
ized, the user may modify CHOLMOD’s parameters held in this object, and obtain statistics on
CHOLMOD'’s activity.

Primary routines for the cholmod_common object:

e cholmod_start: the first call to CHOLMOD.

e cholmod finish: the last call to CHOLMOD (frees workspace in the cholmod_common object).
Secondary routines for the cholmod_common object:

e cholmod_defaults: restores default parameters

e cholmod maxrank: determine maximum rank for update/downdate.

e cholmod_allocate_work: allocate workspace.

e cholmod_free_work: free workspace.

e cholmod_clear_flag: clear Flag array.

e cholmod_error: called when CHOLMOD encounters and error.

e cholmod_dbound: bounds the diagonal of L or D.

e cholmod_hypot: compute sqrt (x*x+y*y) accurately.

e cholmod_divcomplex: complex divide.

37

8.1.2 cholmod_ sparse: a sparse matrix in compressed column form

A sparse matrix A is held in compressed column form. In the basic type (“packed,” which corre-
sponds to how MATLAB stores its sparse matrices), and nrow-by-ncol matrix with nzmax entries is
held in three arrays: p of size ncol+1, i of size nzmax, and x of size nzmax. Row indices of nonzero
entries in column j areheldini [p[j] ... pl[j+11-1], and their corresponding numerical values
are held in x [p[j] ... pl[j+1]1-1]. The first column starts at location zero (p[0]=0). There
may be no duplicate entries. Row indices in each column may be sorted or unsorted (the A->sorted
flag must be false if the columns are unsorted). The A->stype determines the storage mode: 0 if
the matrix is unsymmetric, 1 if the matrix is symmetric with just the upper triangular part stored,
and -1 if the matrix is symmetric with just the lower triangular part stored.

In “unpacked” form, an additional array nz of size ncol is used. The end of column j in i and
x is given by p[jl1+nz[j]. Columns not need be in any particular order (p[0] need not be zero),
and there may be gaps between the columns.

Primary routines for the cholmod_sparse object:
e cholmod_allocate_sparse: allocate a sparse matrix
e cholmod free _sparse: free a sparse matrix
Secondary routines for the cholmod_sparse object:
e cholmod reallocate_sparse: change the size (number of entries) of a sparse matrix.
e cholmod_nnz: number of nonzeros in a sparse matrix.
e cholmod_speye: sparse identity matrix.
e cholmod_spzeros: sparse zero matrix.
e cholmod transpose: transpose a sparse matrix.
e cholmod ptranspose: transpose/permute a sparse matrix.
e cholmod_transpose_unsym: transpose/permute an unsymmetric sparse matrix.
e cholmod_transpose_sym: transpose/ permute a symmetric sparse matrix.
e cholmod_sort: sort row indices in each column of a sparse matrix.
e cholmod band: extract a band of a sparse matrix.
e cholmod band_inplace: remove entries not with a band.
e cholmod_aat: C = AxA’.
e cholmod_copy_sparse: C = A, create an exact copy of a sparse matrix.
e cholmod_copy: C = A, with possible change of stype.
e cholmod_add: C = alpha*A + beta*B.

e cholmod_sparse xtype: change the xtype of a sparse matrix.

38

8.1.3 cholmod factor: a symbolic or numeric factorization

A factor can be in LLT or LDLT form, and either supernodal or simplicial form. In simplicial
form, this is very much like a packed or unpacked cholmod _sparse matrix. In supernodal form,
adjacent columns with similar nonzero pattern are stored as a single block (a supernode).

Primary routine for the cholmod_factor object:
e cholmod free factor: free a factor
Secondary routines for the cholmod factor object:

e cholmod allocate_factor: allocate a factor. You will normally use cholmod_analyze to
create a factor.

e cholmod reallocate factor: change the number of entries in a factor.

e cholmod change factor: change the type of a factor (LDLT to LLT, supernodal to simpli-
cial, etc.).

e cholmod pack_factor: pack the columns of a factor.

e cholmod_reallocate_column: resize a single column of a factor.

e cholmod factor_to_sparse: create a sparse matrix copy of a factor.
e cholmod_copy_factor: create a copy of a factor.

e cholmod _factor_xtype: change the xtype of a factor.

8.1.4 cholmod dense: a dense matrix
This consists of a dense array of numerical values and its dimensions.
Primary routines for the cholmod_dense object:

e cholmod_allocate_dense: allocate a dense matrix.

e cholmod_free_dense: free a dense matrix.

Secondary routines for the cholmod_dense object:
e cholmod_zeros: allocate a dense matrix of all zeros.
e cholmod ones: allocate a dense matrix of all ones.
e cholmod_eye: allocate a dense identity matrix .
e cholmod_sparse_to_dense: create a dense matrix copy of a sparse matrix.
e cholmod_dense_to_sparse: create a sparse matrix copy of a dense matrix.
e cholmod _copy_dense: create a copy of a dense matrix.
e cholmod copy dense2: copy a dense matrix (pre-allocated).

e cholmod dense xtype: change the xtype of a dense matrix.

39

8.1.5 cholmod triplet: a sparse matrix in “triplet” form

The cholmod_sparse matrix is the basic sparse matrix used in CHOLMOD, but it can be difficult
for the user to construct. It also does not easily support the inclusion of new entries in the matrix.
The cholmod_triplet matrix is provided to address these issues. A sparse matrix in triplet form
consists of three arrays of size nzmax: i, j, and x, and a z array for the zomplex case.

Primary routines for the cholmod_triplet object:

e cholmod_allocate_triplet: allocate a triplet matrix.

e cholmod free triplet: free a triplet matrix.

e cholmod triplet_to_sparse: create a sparse matrix copy of a triplet matrix.
Secondary routines for the cholmod triplet object:

e cholmod reallocate_triplet: change the number of entries in a triplet matrix.

e cholmod_sparse_to_triplet: create a triplet matrix copy of a sparse matrix.

e cholmod_copy_triplet: create a copy of a triplet matrix.

e cholmod_triplet _xtype: change the xtype of a triplet matrix.

8.1.6 Memory management routines

By default, CHOLMOD uses the ANSI C malloc, free, calloc, and realloc routines. You may
use different routines by modifying function pointers in the cholmod_common object.

Primary routines:

e cholmod malloc: malloc wrapper.

e cholmod_free: free wrapper.
Secondary routines:

e cholmod_calloc: calloc wrapper.

e cholmod_realloc: realloc wrapper.

e cholmod realloc multiple: realloc wrapper for multiple objects.

40

8.2 Check Module: print/check the CHOLMOD objects

The Check Module contains routines that check and print the five basic objects in CHOLMOD,
and three kinds of integer vectors (a set, a permutation, and a tree). It also provides a routine to
read a sparse matrix from a file in Matrix Market format (http://www.nist.gov/MatrixMarket).
Requires the Core Module.

Primary routines:

e cholmod print_common: print the cholmod_common object, including statistics on CHOLMOD'’s
behavior (fill-in, flop count, ordering methods used, and so on).

e cholmod write_sparse: write a sparse matrix to a file in Matrix Market format.
e cholmod write_dense: write a sparse matrix to a file in Matrix Market format.

e cholmod_read matrix: read a sparse or dense matrix from a file in Matrix Market format.

Secondary routines:
e cholmod _check common: check the cholmod_common object
e cholmod_check_sparse: check a sparse matrix
e cholmod print_sparse: print a sparse matrix
e cholmod_check_dense: check a dense matrix
e cholmod print_dense: print a dense matrix
e cholmod_check factor: check a Cholesky factorization
e cholmod print_factor: print a Cholesky factorization
e cholmod check_triplet: check a triplet matrix
e cholmod print_triplet: print a triplet matrix
e cholmod_check_subset: check a subset (integer vector in given range)
e cholmod print_subset: print a subset (integer vector in given range)
e cholmod check perm: check a permutation (an integer vector)
e cholmod print_perm: print a permutation (an integer vector)
e cholmod_check parent: check an elimination tree (an integer vector)
e cholmod print_parent: print an elimination tree (an integer vector)
e cholmod read triplet: read a triplet matrix from a file
e cholmod read _sparse: read a sparse matrix from a file

e cholmod_read_dense: read a dense matrix from a file

41

8.3 Cholesky Module: sparse Cholesky factorization

The primary routines are all that a user requires to order, analyze, and factorize a sparse symmetric
positive definite matrix A (or AAT), and to solve Ax = b (or AATx = b). The primary routines
rely on the secondary routines, the Core Module, and the AMD and COLAMD packages. They
make optional use of the Supernodal and Partition Modules, the METIS package, the CAMD
package, and the CCOLAMD package. The Cholesky Module is required by the Partition Module.

Primary routines:

e cholmod analyze: order and analyze (simplicial or supernodal).

e cholmod factorize: simplicial or supernodal Cholesky factorization.

e cholmod_solve: solve a linear system (simplicial or supernodal, dense x and b).

e cholmod_spsolve: solve a linear system (simplicial or supernodal, sparse x and b).
Secondary routines:

e cholmod_analyze_ p: analyze, with user-provided permutation or f set.

e cholmod factorize_p: factorize, with user-provided permutation or f.

e cholmod analyze ordering: analyze a permutation

e cholmod etree: find the elimination tree.

e cholmod_rowcolcounts: compute the row/column counts of L.

e cholmod_amd: order using AMD.

e cholmod_colamd: order using COLAMD.

e cholmod_rowfac: incremental simplicial factorization.

e cholmod row_subtree: find the nonzero pattern of a row of L.

e cholmod_row_lsubtree: find the nonzero pattern of a row of L.

e cholmod resymbol: recompute the symbolic pattern of L.

e cholmod resymbol noperm: recompute the symbolic pattern of L, no permutation.

e cholmod_postorder: postorder a tree.

e cholmod rcond: compute the reciprocal condition number estimate.

e cholmod rowfac mask: for use in LPDASA only.

42

8.4 Modify Module: update/downdate a sparse Cholesky factorization

The Modify Module contains sparse Cholesky modification routines: update, downdate, row-add,
and row-delete. It can also modify a corresponding solution to Lx = b when L is modified. This
module is most useful when applied on a Cholesky factorization computed by the Cholesky module,
but it does not actually require the Cholesky module. The Core module can create an identity
Cholesky factorization (LDLT where L = D = I) that can then be modified by these routines.
Requires the Core module. Not required by any other CHOLMOD Module.

Primary routine:
e cholmod updown: multiple rank update/downdate
Secondary routines:

e cholmod updown_solve: update/downdate, and modify solution to Lx = b

e cholmod_updown mark: update/downdate, and modify solution to partial Lx = b
e cholmod_ updown mask: for use in LPDASA only.

e cholmod rowadd: add a row to an LDLT factorization

e cholmod rowadd _solve: add a row, and update solution to Lx = b

e cholmod rowadd mark: add a row, and update solution to partial Lx = b

e cholmod_rowdel: delete a row from an LDLT factorization

e cholmod rowdel _solve: delete a row, and downdate Lx = b

e cholmod_rowdel _mark: delete a row, and downdate solution to partial Lx = b

8.5 MatrixOps Module: basic sparse matrix operations

The Matrix0ps Module provides basic operations on sparse and dense matrices. Requires the Core
module. Not required by any other CHOLMOD module. In the descriptions below, A, B, and C:
are sparse matrices (cholmod_sparse), X and Y are dense matrices (cholmod _dense), s is a scalar
or vector, and alpha beta are scalars.

e cholmod drop: drop entries from A with absolute value > a given tolerance.

e cholmod norm dense: s = norm (X), l-norm, infinity-norm, or 2-norm

e cholmod norm sparse: s = norm (A), l-norm or infinity-norm

e cholmod_horzcat: C = [A,B]

e cholmod_scale: A = diag(s)*A, Axdiag(s), s*A or diag(s)*Axdiag(s).

e cholmod_sdmult: Y = alphax(A*X) + betaxY or alphax(A’*X) + betaxY.

e cholmod_ssmult: C = A%*B

e cholmod_submatrix: C = A (i,j), where i and j are arbitrary integer vectors.
e cholmod_vertcat: C = [A ; B].

e cholmod _symmetry: determine symmetry of a matrix.

43

8.6 Supernodal Module: supernodal sparse Cholesky factorization

The Supernodal Module performs supernodal analysis, factorization, and solve. The simplest way
to use these routines is via the Cholesky Module. This Module does not provide any fill-reducing
orderings. It normally operates on matrices ordered by the Cholesky Module. It does not require
the Cholesky Module itself, however. Requires the Core Module, and two external packages:
LAPACK and the BLAS. Optionally used by the Cholesky Module. All are secondary routines
since these functions are more easily used via the Cholesky Module.

Secondary routines:
e cholmod_super_symbolic: supernodal symbolic analysis
e cholmod_super numeric: supernodal numeric factorization
e cholmod_super_lsolve: supernodal Lx = b solve

e cholmod_super_ltsolve: supernodal LTx = b solve

8.7 Partition Module: graph-partitioning-based orderings

The Partition Module provides graph partitioning and graph-partition-based orderings. It in-
cludes an interface to CAMD, CCOLAMD, and CSYMAMD), constrained minimum degree ordering
methods which order a matrix following constraints determined via nested dissection. Requires the
Core and Cholesky Modules, and two packages: METIS 4.0.1, CAMD, and CCOLAMD. Option-
ally used by the Cholesky Module. All are secondary routines since these are more easily used by
the Cholesky Module.

Note that METIS does not have a version that uses long integers. If you try to use these
routines (except the CAMD, CCOLAMD, and CSYMAMD interfaces) on a matrix that is too
large, an error code will be returned.

Secondary routines:
e cholmod nested dissection: CHOLMOD nested dissection ordering
e cholmod metis: METIS nested dissection ordering (METIS_NodeND)
e cholmod_camd: interface to CAMD ordering
e cholmod_ccolamd: interface to CCOLAMD ordering
e cholmod_csymamd: interface to CSYMAMD ordering
e cholmod bisect: graph partitioner (currently based on METIS)
e cholmod metis bisector: direct interface to METIS NodeComputeSeparator.

e cholmod_collapse_septree: pruned a separator tree from cholmod nested_dissection.

44

9 CHOLMOD naming convention, parameters, and return values

All routine names, data types, and CHOLMOD library files use the cholmod_ prefix. All macros
and other #define statements visible to the user program use the CHOLMOD prefix. The cholmod.h
file must be included in user programs that use CHOLMOD:

#include "cholmod.h"

All CHOLMOD routines (in all modules) use the following protocol for return values:

int: TRUE (1) if successful, or FALSE (0) otherwise. (exception: cholmod _divcomplex).
long: a value > 0 if successful, or -1 otherwise.

double: a value > 0 if successful, or -1 otherwise.

size_t: a value > 0 if successful, or 0 otherwise.

void *: a non-NULL pointer to newly allocated memory if successful, or NULL otherwise.

cholmod_sparse *: a non-NULL pointer to a newly allocated sparse matrix if successful, or
NULL otherwise.

cholmod factor *: a non-NULL pointer to a newly allocated factor if successful, or NULL
otherwise.

cholmod triplet *: a non-NULL pointer to a newly allocated triplet matrix if successful, or
NULL otherwise.

cholmod_dense *: a non-NULL pointer to a newly allocated dense matrix if successful, or NULL
otherwise.

TRUE and FALSE are not defined in cholmod.h, since they may conflict with the user program. A
routine that described here returning TRUE or FALSE returns 1 or 0, respectively. Any TRUE/FALSE
parameter is true if nonzero, false if zero.

Input, output, and input/output parameters:

Input parameters appear first in the parameter lists of all CHOLMOD routines. They are
not modified by CHOLMOD.

Input/output parameters (except for Common) appear next. They must be defined on input,
and are modified on output.

Output parameters are listed next. If they are pointers, they must point to allocated space
on input, but their contents are not defined on input.

Workspace parameters appear next. They are used in only two routines in the Supernodal
module.

The cholmod common *Common parameter always appears as the last parameter (with two
exceptions: cholmod hypot and cholmod divcomplex). It is always an input/output param-
eter.

A floating-point scalar is passed to CHOLMOD as a pointer to a double array of size two. The
first entry in this array is the real part of the scalar, and the second entry is the imaginary part.
The imaginary part is only accessed if the other inputs are complex or zomplex. In some cases the
imaginary part is always ignored (cholmod _factor_p, for example).

45

10 Core Module: cholmod_common object

10.1 Constant definitions

/* itype defines the types of integer used: */
#define CHOLMOD_INT O /* all integer arrays are int */
#define CHOLMOD_INTLONG 1 /* most are int, some are UF_long */
#define CHOLMOD_LONG 2 /* all integer arrays are UF_long */
/* The itype of all parameters for all CHOLMOD routines must match.
* FUTURE WORK: CHOLMOD_INTLONG is not yet supported.
*/
/* dtype defines what the numerical type is (double or float): */
#define CHOLMOD_DOUBLE O /* all numerical values are double */
#define CHOLMOD_SINGLE 1 /* all numerical values are float */
/* The dtype of all parameters for all CHOLMOD routines must match.
*

* %

Scalar floating-point values are always passed as double arrays of size 2
(for the real and imaginary parts). They are typecast to float as needed.
FUTURE WORK: the float case is not supported yet.

*/

/* xtype defines the kind of numerical values used: */
#define CHOLMOD_PATTERN O /* pattern only, no numerical values */
#define CHOLMOD_REAL 1 /* a real matrix */
#define CHOLMOD_COMPLEX 2 /* a complex matrix (ANSI C99 compatible) */
#define CHOLMOD_ZOMPLEX 3 /* a complex matrix (MATLAB compatible) */
/* The xtype of all parameters for all CHOLMOD routines must match.

¥R R R K K XK X X X X X K K K X X X X X X X K X X X ¥

CHOLMOD_PATTERN: x and z are ignored.

CHOLMOD_DOUBLE: x is non-null of size nzmax, z is ignored.
CHOLMOD_COMPLEX: x is non-null of size 2*nzmax doubles, z is ignored.
CHOLMOD_ZOMPLEX: x and z are non-null of size nzmax

In the real case, z is ignored. The kth entry in the matrix is x [k].
There are two methods for the complex case. In the ANSI C99-compatible
CHOLMOD_COMPLEX case, the real and imaginary parts of the kth entry

are in x [2#k] and x [2xk+1], respectively. =z is ignored. In the
MATLAB-compatible CHOLMOD_ZOMPLEX case, the real and imaginary

parts of the kth entry are in x [k] and z [k].

Scalar floating-point values are always passed as double arrays of size 2
(real and imaginary parts). The imaginary part of a scalar is ignored if

the routine operates on a real matrix.

These Modules support complex and zomplex matrices, with a few exceptions:

Check all routines
Cholesky all routines
Core all except cholmod_aat, add, band, copy
Demo all routines

Partition all routines

Supernodal all routines support any real, complex, or zomplex input.
There will never be a supernodal zomplex L; a complex
supernodal L is created if A is zomplex.

46

* Tcov all routines

* Valgrind all routines

*

* These Modules provide partial support for complex and zomplex matrices:

*

* MATLAB all routines support real and zomplex only, not complex,
* with the exception of ldlupdate, which supports

* real matrices only. This is a minor constraint since
* MATLAB’s matrices are all real or zomplex.

* MatrixOps only norm_dense, norm_sparse, and sdmult support complex
* and zomplex

*

* These Modules do not support complex and zomplex matrices at all:

*

* Modify all routines support real matrices only

*/

/* Definitions for cholmod_common: */
#define CHOLMOD_MAXMETHODS 9 /* maximum number of different methods that
* cholmod_analyze can try. Must be >= 9. %/

/* Common->status values. zero means success, negative means a fatal error,
* positive is a warning. */

#define CHOLMOD_OK O /* success */

#define CHOLMOD_NOT_INSTALLED (-1) /* failure: method not installed */
#define CHOLMOD_OUT_OF_MEMORY (-2) /* failure: out of memory */

#define CHOLMOD_TOO_LARGE (-3) /* failure: integer overflow occured */
#define CHOLMOD_INVALID (-4) /* failure: invalid input */

#define CHOLMOD_NOT_POSDEF (1) /* warning: matrix not pos. def. */
#define CHOLMOD_DSMALL (2) /* warning: D for LDL’ or diag(L) or

* LL’ has tiny absolute value */

/* ordering method (also used for L->ordering) */

#define CHOLMOD_NATURAL O /* use natural ordering */

#define CHOLMOD_GIVEN 1 /* use given permutation */

#define CHOLMOD_AMD 2 /* use minimum degree (AMD) */

#define CHOLMOD_METIS 3 /* use METIS’ nested dissection */

#define CHOLMOD_NESDIS 4 /* use CHOLMOD’s version of nested dissection:

* node bisector applied recursively, followed
* by constrained minimum degree (CSYMAMD or
* CCOLAMD) */

#define CHOLMOD_COLAMD 5 /* use AMD for A, COLAMD for AxA’ x/

/* POSTORDERED is not a method, but a result of natural ordering followed by a
* yeighted postorder. It is used for L->ordering, not method [].ordering. */
#define CHOLMOD_POSTORDERED 6 /* natural ordering, postordered. */

/* supernodal strategy (for Common->supernodal) */

#define CHOLMOD_SIMPLICIAL O /% always do simplicial */

#define CHOLMOD_AUTO 1 /* select simpl/super depending on matrix */
#define CHOLMOD_SUPERNODAL 2 /* always do supernodal */

Purpose: These definitions are used within the cholmod_common object, called Common both here
and throughout the code.

47

10.2 cholmod_common: parameters, statistics, and workspace

typedef struct cholmod_common_struct

{

/*x —= -— -— ——————————— *x/
/* parameters for symbolic/numeric factorization and update/downdate */
R -—- -—- e */
double dbound ; /* Smallest absolute value of diagonal entries of D

* for LDL’ factorization and update/downdate/rowadd/
rowdel, or the diagonal of L for an LL’ factorization.
Entries in the range O to dbound are replaced with dbound.
Entries in the range -dbound to O are replaced with -dbound. No
changes are made to the diagonal if dbound <= 0. Default: zero */

* X X ¥

double grow0 ; /* For a simplicial factorization, L->i and L->x can

* grow if necessary. grow0O is the factor by which
it grows. For the initial space, L is of size MAX (1,grow0) times
the required space. If L runs out of space, the new size of L is
MAX(1.2,grow0) times the new required space. If you do not plan on
modifying the LDL’ factorization in the Modify module, set growO to
zero (or set grow2 to O, see below). Default: 1.2 */

* ¥ X X *

double growl ;

size_t grow2 ; /* For a simplicial factorization, each column j of L

* is initialized with space equal to
growl*L->ColCount [j] + grow2. If grow0 < 1, growl < 1, or grow2 == 0,
then the space allocated is exactly equal to L->ColCount[j]. If the
column j runs out of space, it increases to growl*need + grow2 in
size, where need is the total # of nonzeros in that column. If you do
not plan on modifying the factorization in the Modify module, set
grow2 to zero. Default: growl = 1.2, grow2 = 5. */

* X X X X *

size_t maxrank ; /* rank of maximum update/downdate. Valid values:

* 2, 4, or 8. A value < 2 is set to 2, and a
value > 8 is set to 8. It is then rounded up to the next highest
power of 2, if not already a power of 2. Workspace (Xwork, below) of
size nrow-by-maxrank double’s is allocated for the update/downdate.
If an update/downdate of rank-k is requested, with k > maxrank,
it is done in steps of maxrank. Default: 8, which is fastest.
Memory usage can be reduced by setting maxrank to 2 or 4.

double supernodal_switch ; /* supernodal vs simplicial factorization */

int supernodal ; /* If Common->supernodal <= CHOLMOD_SIMPLICIAL
* (0) then cholmod_analyze performs a

simplicial analysis. If >= CHOLMOD_SUPERNODAL (2), then a supernodal

analysis is performed. If == CHOLMOD_AUTO (1) and

flop/nnz (L) < Common->supernodal_switch, then a simplicial analysis

is done. A supernodal analysis done otherwise.

Default: CHOLMOD_AUTO. Default supernodal_switch = 40 */

* ¥ ¥ X *

int final_asis ; /* If TRUE, then ignore the other final_* parameters
* (except for final_pack).
* The factor is left as-is when done. Default: TRUE.*/

int final_super ; /* If TRUE, leave a factor in supernodal form when
* supernodal factorization is finished. If FALSE,

48

int

int

int

int

* then convert to a simplicial factor when done.
* Default: TRUE */

final_11 ; /* If TRUE, leave factor in LL’ form when done.
* Otherwise, leave in LDL’ form. Default: FALSE */

final_pack ; /* If TRUE, pack the columns when done. If TRUE, and

* cholmod_factorize is called with a symbolic L, L is
allocated with exactly the space required, using L->ColCount. If you
plan on modifying the factorization, set Common->final_pack to FALSE,
and each column will be given a little extra slack space for future
growth in fill-in due to updates. Default: TRUE */

final_monotonic ; /* If TRUE, ensure columns are monotonic when done.
* Default: TRUE */

final_resymbol ;/* if cholmod_factorize performed a supernodal

* factorization, final_resymbol is true, and
final_super is FALSE (convert a simplicial numeric factorization),
then numerically zero entries that resulted from relaxed supernodal
amalgamation are removed. This does not remove entries that are zero
due to exact numeric cancellation, since doing so would break the
update/downdate rowadd/rowdel routines. Default: FALSE. */

LR I

/* supernodal relaxed amalgamation parameters: */
double zrelax [3] ;
size_t nrelax [3] ;

/* Let ns be the total number of columns in two adjacent supernodes.
Let z be the fraction of zero entries in the two supernodes if they
are merged (z includes zero entries from prior amalgamations). The
two supernodes are merged if:

(ns <= nrelax [0]) || (no new zero entries added) ||

(ns <= nrelax [1] && z < zrelax [0]) ||

(ns <= nrelax [2] && z < zrelax [1]) || (z < zrelax [2])

*
*
*
*
*
*
*
* Default parameters result in the following rule:

* (ns <= 4) || (no new zero entries added) ||

* (ns <= 16 && z < 0.8) || (ns <= 48 & z < 0.1) || (z < 0.05)

*/

int prefer_zomplex ; /* X = cholmod_solve (sys, L, B, Common) computes

* x=A\b or solves a related system. If L and B are
both real, then X is real. Otherwise, X is returned as
CHOLMOD_COMPLEX if Common->prefer_zomplex is FALSE, or
CHOLMOD_ZOMPLEX if Common->prefer_zomplex is TRUE. This parameter
is needed because there is no supernodal zomplex L. Suppose the
caller wants all complex matrices to be stored in zomplex form
(MATLAB, for example). A supernodal L is returned in complex form
if A is zomplex. B can be real, and thus X = cholmod_solve (L,B)
should return X as zomplex. This cannot be inferred from the input
arguments L and B. Default: FALSE, since all data types are
supported in CHOLMOD_COMPLEX form and since this is the native type
of LAPACK and the BLAS. Note that the MATLAB/cholmod.c mexFunction
sets this parameter to TRUE, since MATLAB matrices are in
CHOLMOD_ZOMPLEX form.

¥R X K K X X X X X X X ¥

*
~

int prefer_upper ; /* cholmod_analyze and cholmod_factorize work

49

* fastest when a symmetric matrix is stored in
upper triangular form when a fill-reducing ordering is used. In
MATLAB, this corresponds to how x=A\b works. When the matrix is
ordered as-is, they work fastest when a symmetric matrix is in lower
triangular form. In MATLAB, R=chol(A) does the opposite. This
parameter affects only how cholmod_read returns a symmetric matrix.
If TRUE (the default case), a symmetric matrix is always returned in
upper-triangular form (A->stype = 1). */

L K R R A

int quick_return_if_not_posdef ; /* if TRUE, the supernodal numeric
* factorization will return quickly if
* the matrix is not positive definite. Default: FALSE. */

/*x —= -— -— ——————————— *x/
/* printing and error handling options */

e —- e */
int print ; /* print level. Default: 3 */

int precise ; /* if TRUE, print 16 digits. Otherwise print 5 */

int (*print_function) (const char *, ...) ; /* pointer to printf */

int try_catch ; /* if TRUE, then ignore errors; CHOLMOD is in the middle

* of a try/catch block. No error message is printed
* and the Common->error_handler function is not called. */

void (*error_handler) (int status, char *file, int line, char *message) ;

/* Common->error_handler is the user’s error handling routine. If not
* NULL, this routine is called if an error occurs in CHOLMOD. status
* can be CHOLMOD_OK (0), negative for a fatal error, and positive for
* a warning. file is a string containing the name of the source code
* file where the error occured, and line is the line number in that
* file. message is a string describing the error in more detail. */

/*x —= —— - ——— */
/* ordering options */
e ———— —- —- e */

/* The cholmod_analyze routine can try many different orderings and select
the best one. It can also try one ordering method multiple times, with
different parameter settings. The default is to use three orderings,

the user’s permutation (if provided), AMD which is the fastest ordering
and generally gives good fill-in, and METIS. CHOLMOD’s nested dissection
(METIS with a constrained AMD) usually gives a better ordering than METIS
alone (by about 5% to 10%) but it takes more time.

If you know the method that is best for your matrix, set Common->nmethods
to 1 and set Common->method [0] to the set of parameters for that method.
If you set it to 1 and do not provide a permutation, then only AMD will
be called.

If METIS is not available, the default # of methods tried is 2 (the user
permutation, if any, and AMD).

To try other methods, set Common->nmethods to the number of methods you
want to try. The suite of default methods and their parameters is
described in the cholmod_defaults routine, and summarized here:

¥R X X K X K X X X X X X X X X ¥ X ¥ *

Common->method [i]:

50

user-provided ordering (cholmod_analyze_p only)

AMD (for both A and A*A’)

METIS

CHOLMOD’s nested dissection (NESDIS), default parameters
natural

NESDIS with nd_small = 20000

NESDIS with nd_small = 4, no constrained minimum degree
NESDIS with no dense node removal

AMD for A, COLAMD for AxA’

L A S T T T
1
0N UA WN RO

You can modify the suite of methods you wish to try by modifying
Common.method [...] after calling cholmod_start or cholmod_defaults.

For example, to use AMD, followed by a weighted postordering:

Common->nmethods = 1 ;
Common->method [0].ordering = CHOLMOD_AMD ;
Common->postorder = TRUE ;

To use the natural ordering (with no postordering):

Common->nmethods = 1 ;
Common->method [0].ordering = CHOLMOD_NATURAL ;
Common->postorder = FALSE ;

If you are going to factorize hundreds or more matrices with the same
nonzero pattern, you may wish to spend a great deal of time finding a
good permutation. In this case, try setting Common->nmethods to 9.
The time spent in cholmod_analysis will be very high, but you need to
call it only once.

cholmod_analyze sets Common->current to a value between O and nmethods-1.
Each ordering method uses the set of options defined by this parameter.

¥R K X K X X X X X X K X K X X X X X X K X X X X ¥ X ¥ ¥ ¥ ¥ % *

*
~

int nmethods ; /* The number of ordering methods to try. Default: O.

* nmethods = 0 is a special case. cholmod_analyze
will try the user-provided ordering (if given) and AMD. Let fl and
Inz be the flop count and nonzeros in L from AMD’s ordering. Let
anz be the number of nonzeros in the upper or lower triangular part
of the symmetric matrix A. If f1/lnz < 500 or lnz/anz < 5, then this
is a good ordering, and METIS is not attempted. Otherwise, METIS is
tried. The best ordering found is used. If nmethods > O, the
methods used are given in the method[] array, below. The first
three methods in the default suite of orderings is (1) use the given
permutation (if provided), (2) use AMD, and (3) use METIS. Maximum
allowed value is CHOLMOD_MAXMETHODS. */

¥ X X K X X X ¥ ¥ *

int current ; /* The current method being tried. Default: 0. Valid
* range is O to nmethods-1. */

int selected ; /* The best method found. */

/* The suite of ordering methods and parameters: */
struct cholmod_method_struct

{

/* statistics for this method */
double 1nz ; /* nnz(L) excl. zeros from supernodal amalgamation,

o1

* for a "pure" L */

double f1 ; /* flop count for a "pure", real simplicial LL’

*
*

*x factorization, with no extra work due to
amalgamation. Subtract n to get the LDL’ flop count. Multiply
by about 4 if the matrix is complex or zomplex. */

/* ordering method parameters */
double prune_dense ;/* dense row/col control for AMD, SYMAMD, CSYMAMD,

¥R K X K X K X X X X K X X K X ¥ X * ¥

* and NESDIS (cholmod_nested_dissection). For a
symmetric n-by-n matrix, rows/columns with more than
MAX (16, prune_dense * sqrt (n)) entries are removed prior to
ordering. They appear at the end of the re-ordered matrix.

If prune_dense < 0, only completely dense rows/cols are removed.

This paramater is also the dense column control for COLAMD and
CCOLAMD. For an m-by-n matrix, columns with more than

MAX (16, prune_dense * sqrt (MIN (m,n))) entries are removed prior
to ordering. They appear at the end of the re-ordered matrix.
CHOLMOD factorizes A*A’, so it calls COLAMD and CCOLAMD with A’,
not A. Thus, this parameter affects the dense *row* control for
CHOLMOD’s matrix, and the dense *column* control for COLAMD and
CCOLAMD.

Removing dense rows and columns improves the run-time of the
ordering methods. It has some impact on ordering quality

(usually minimal, sometimes good, sometimes bad).

Default: 10. */

double prune_dense2 ;/* dense row control for COLAMD and CCOLAMD.

* X K X X X X ¥ *

* Rows with more than MAX (16, dense2 * sqrt (m))
for an m-by-n matrix are removed prior to ordering. CHOLMOD’s
matrix is transposed before ordering it with COLAMD or CCOLAMD,
so this controls the dense *columns* of CHOLMOD’s matrix, and
the dense *rows* of COLAMD’s or CCOLAMD’s matrix.

If prune_dense2 < 0, only completely dense rows/cols are removed.

Default: -1. Note that this is not the default for COLAMD and
CCOLAMD. -1 is best for Cholesky. 10 is best for LU. x*/

double nd_oksep ; /* in NESDIS, when a node separator is computed, it

*
*
*
*

* discarded if nsep >= nd_oksep*n, where nsep is
the number of nodes in the separator, and n is the size of the
graph being cut. Valid range is O to 1. If 1 or greater, the
separator is discarded if it consists of the entire graph.
Default: 1 */

double otherl [4] ; /* future expansion */

size_t nd_small ; /* do not partition graphs with fewer nodes than

* nd_small, in NESDIS. Default: 200 (same as
* METIS) */

size_t other2 [4] ; /* future expansion */

int aggressive ; /* Aggresive absorption in AMD, COLAMD, SYMAMD,

52

* CCOLAMD, and CSYMAMD. Default: TRUE */

int order_for_lu ; /* CCOLAMD can be optimized to produce an ordering

* for LU or Cholesky factorization. CHOLMOD only
performs a Cholesky factorization. However, you may wish to use
CHOLMOD as an interface for CCOLAMD but use it for your own LU
factorization. In this case, order_for_lu should be set to FALSE.
When factorizing in CHOLMOD itself, you should *** NEVER ***x set
this parameter FALSE. Default: TRUE. */

* X ¥ X *

int nd_compress ; /* If TRUE, compress the graph and subgraphs before
* partitioning them in NESDIS. Default: TRUE */

int nd_camd ; /* If 1, follow the nested dissection ordering

* with a constrained minimum degree ordering that
respects the partitioning just found (using CAMD). If 2, use
CSYMAMD instead. If you set nd_small very small, you may not need
this ordering, and can save time by setting it to zero (no
constrained minimum degree ordering). Default: 1. */

* X ¥ X

int nd_components ; /* The nested dissection ordering finds a node

* separator that splits the graph into two parts,
which may be unconnected. If nd_components is TRUE, each of
these connected components is split independently. If FALSE,
each part is split as a whole, even if it consists of more than
one connected component. Default: FALSE */

* ¥ ¥ %

/* fill-reducing ordering to use */
int ordering ;

size_t other3 [4] ; /* future expansion */
} method [CHOLMOD_MAXMETHODS + 1] ;
int postorder ; /* If TRUE, cholmod_analyze follows the ordering with a
* weighted postorder of the elimination tree. Improves

* supernode amalgamation. Does not affect fundamental nnz(L) and
* flop count. Default: TRUE. */

[k ———m——— -—— -—— e */
/* memory management routines */

K */
void *(*malloc_memory) (size_t) ; /* pointer to malloc */

void *(*realloc_memory) (void *, size_t) ; /* pointer to realloc */

void (*free_memory) (void *) ; /* pointer to free */

void *(*calloc_memory) (size_t, size_t) ; /* pointer to calloc */

/* —= -—- -—- -—- e */
/* routines for complex arithmetic */

[m e */

int (*complex_divide) (double ax, double az, double bx, double bz,
double *cx, double *cz) ;

/* flag = complex_divide (ax, az, bx, bz, &cx, &cz) computes the complex
* division ¢ = a/b, where ax and az hold the real and imaginary part

* of a, and b and ¢ are stored similarly. flag is returned as 1 if

* a divide-by-zero occurs, or O otherwise. By default, the function

53

* pointer Common->complex_divide is set equal to cholmod_divcomplex.

*/
double (*hypotenuse) (double x, double y) ;

/* s = hypotenuse (x,y) computes s = sqrt (x*x + y*y), but does so more
* accurately. By default, the function pointer Common->hypotenuse is

* set equal to cholmod_hypot. See also the hypot function in the C99

* standard, which has an identical syntax and function. If you have

* a C99-compliant compiler, you can set Common->hypotenuse = hypot. */

K */
/* METIS workarounds */

/*x —= -— -— ——————————— *x/
double metis_memory ; /* This is a parameter for CHOLMOD’s interface to

* METIS, not a parameter to METIS itself. METIS
uses an amount of memory that is difficult to estimate precisely
beforehand. If it runs out of memory, it terminates your program.
A1l routines in CHOLMOD except for CHOLMOD’s interface to METIS
return an error status and safely return to your program if they run
out of memory. To mitigate this problem, the CHOLMOD interface
can allocate a single block of memory equal in size to an empirical
upper bound of METIS’s memory usage times the Common->metis_memory
parameter, and then immediately free it. It then calls METIS. If
this pre-allocation fails, it is possible that METIS will fail as
well, and so CHOLMOD returns with an out-of-memory condition without
calling METIS.

METIS_NodeND (used in the CHOLMOD_METIS ordering option) with its
default parameter settings typically uses about (4*nz+40n+4096)
times sizeof (int) memory, where nz is equal to the number of entries
in A for the symmetric case or AA’ if an unsymmetric matrix is
being ordered (where nz includes both the upper and lower parts

of A or AA’). The observed "upper bound" (with 2 exceptions),
measured in an instrumented copy of METIS 4.0.1 on thousands of
matrices, is (10*nz+50%n+4096) * sizeof(int). Two large matrices
exceeded this bound, one by almost a factor of 2 (Gupta/gupta2).

If your program is terminated by METIS, try setting metis_memory to
2.0, or even higher if needed. By default, CHOLMOD assumes that METIS
does not have this problem (so that CHOLMOD will work correctly when
this issue is fixed in METIS). Thus, the default value is zero.

This work-around is not guaranteed anyway.

If a matrix exceeds this predicted memory usage, AMD is attempted
instead. It, too, may run out of memory, but if it does so it will
not terminate your program.

¥R R R K K XK XK K K X X X K K X X K K X X X K K X X ¥ ¥ X X *

*/
double metis_dswitch ; /* METIS_NodeND in METIS 4.0.1 gives a seg */
size_t metis_nswitch ; /* fault with one matrix of order n = 3005 and

* nz = 6,036,025. This is a very dense graph.
The workaround is to use AMD instead of METIS for matrices of dimension
greater than Common->metis_nswitch (default 3000) or more and with
density of Common->metis_dswitch (default 0.66) or more.
cholmod_nested_dissection has no problems with the same matrix, even
though it uses METIS_NodeComputeSeparator on this matrix. If this
seg fault does not affect you, set metis_nswitch to zero or less,

* % ¥ X ¥ *

54

*
*
*

*/
/*
/*

/*
*
*
*
*
*
*
*

*/

siz
UF_
siz
siz

/*

voi
voi

voi

/*

voi
int

int

int

and CHOLMOD will not switch to AMD based just on the density of the
matrix (it will still switch to AMD if the metis_memory parameter
causes the switch).

CHOLMOD has several routines that take less time than the size of
workspace they require. Allocating and initializing the workspace would
dominate the run time, unless workspace is allocated and initialized
just once. CHOLMOD allocates this space when needed, and holds it here
between calls to CHOLMOD. cholmod_start sets these pointers to NULL
(which is why it must be the first routine called in CHOLMOD).
cholmod_finish frees the workspace (which is why it must be the last
call to CHOLMOD).

e_t nrow ; /* size of Flag and Head */

long mark ; /* mark value for Flag array */

e_t iworksize ; /* size of Iwork. Upper bound: 6*nrow+ncol */

e_t xworksize ; /* size of Xwork, in bytes.
* maxrank*nrowksizeof (double) for update/downdate.
* 2xnrowxsizeof (double) otherwise */

initialized workspace: contents needed between calls to CHOLMOD */

d *Flag ; /* size nrow, an integer array. Kept cleared between
* calls to cholmod rouines (Flag [i] < mark) */

d *Head ; /* size nrow+l, an integer array. Kept cleared between
* calls to cholmod routines (Head [i] = EMPTY) */
d *Xwork ; /* a double array. Its size varies. It is nrow for
* most routines (cholmod_rowfac, cholmod_add,
* cholmod_aat, cholmod_norm, cholmod_ssmult) for the real case, twice
* that when the input matrices are complex or zomplex. It is of size
* 2xnrow for cholmod_rowadd and cholmod_rowdel. For cholmod_updown,
* its size is maxrank*nrow where maxrank is 2, 4, or 8. Kept cleared
* between calls to cholmod (set to zero). */
uninitialized workspace, contents not needed between calls to CHOLMOD */

d *Iwork ; /* size iworksize, 2*nrow+ncol for most routines,
* up to 6*nrow+ncol for cholmod_analyze. */

itype ; /* If CHOLMOD_LONG, Flag, Head, and Iwork are UF_long.
* Otherwise all three arrays are int. */

dtype ; /* double or float */

/* Common->itype and Common->dtype are used to define the types of all
* sparse matrices, triplet matrices, dense matrices, and factors

* created using this Common struct. The itypes and dtypes of all

* parameters to all CHOLMOD routines must match. */

no_workspace_reallocate ; /* this is an internal flag, used as a
* precaution by cholmod_analyze. It is normally false. If true,

* cholmod_allocate_work is not allowed to reallocate any workspace;
* they must use the existing workspace in Common (Iwork, Flag, Head,

95

* and Xwork). Added for CHOLMOD vi.1 */

fl and 1nz are set only in cholmod_analyze and cholmod_rowcolcounts,
in the Cholesky modudle. modfl is set only in the Modify module. */

int status ; /* error code */

double f1 ; /* LL’> flop count from most recent analysis */
double 1nz ; /* fundamental nz in L */

double anz ; /* nonzeros in tril(A) if A is symmetric/lower,

* triu(A) if symmetric/upper, or tril(A*A’) if
* unsymmetric, in last call to cholmod_analyze. */

double modfl ; /* flop count from most recent update/downdate/

* rowadd/rowdel (excluding flops to modify the
* solution to Lx=b, if computed) */

size_t malloc_count ; /* # of objects malloc’ed minus the # free’dx/
size_t memory_usage ; /* peak memory usage in bytes */

size_t memory_inuse ; /* current memory usage in bytes */

double nrealloc_col ; /* # of column reallocations */

double nrealloc_factor ;/* # of factor reallocations due to col. reallocs */
double ndbounds_hit ; /* # of times diagonal modified by dbound */

double rowfacfl ; /* # of flops in last call to cholmod_rowfac */
double aatfl ; /* # of flops to compute A(:,f)*A(:,f)’ */

Y Ittt */
/* future expansion */

/*x —= - - - ——— */
/* To allow CHOLMOD to be updated without recompiling the user application,

additional space is set aside here for future statistics, parameters,
and workspace. Note: additional entries were added in v1.1 to the
method array, above, and thus v1.0 and vl.1 are not binary compatible.

vl.1l to the current version are binary compatible.

double otherl [16] ;

UF_long other2 [16] ;
int other3 [13] ; /* reduced from size 16 in vi.1. */
int prefer_binary ; /* cholmod_read_triplet converts a symmetric
* pattern-only matrix into a real matrix. If
* prefer_binary is FALSE, the diagonal entries are set to 1 + the degree
* of the row/column, and off-diagonal entries are set to -1 (resulting
* in a positive definite matrix if the diagonal is zero-free). Most
* symmetric patterns are the pattern a positive definite matrix. If
* this parameter is TRUE, then the matrix is returned with a 1 in each
* entry, instead. Default: FALSE. Added in v1.3. */
/* control parameter (added for v1.2): */
int default_nesdis ; /* Default: FALSE. If FALSE, then the default
* ordering strategy (when Common->nmethods == 0)

* is to try the given ordering (if present), AMD, and then METIS if AMD
* reports high fill-in. If Common->default_nesdis is TRUE then NESDIS

56

* is used instead in the default strategy. */
/* statistic (added for v1.2): */
int called_nd ; /* TRUE if the last call to
* cholmod_analyze called NESDIS or METIS. */

size_t other4 [16] ;
void *other5 [16] ;

} cholmod_common ;

Purpose: The cholmod common Common object contains parameters, statistics, and workspace
used within CHOLMOD. The first call to CHOLMOD must be cholmod_start, which initializes
this object.

57

10.3 cholmod_start: start CHOLMOD

int cholmod_start
(

cholmod_common *Common

int cholmod_1_start (cholmod_common *) ;

Purpose: Sets the default parameters, clears the statistics, and initializes all workspace pointers
to NULL. The int/long type is set in Common->itype.

10.4 cholmod finish: finish CHOLMOD

int cholmod_finish

(

cholmod_common *Common

int cholmod_1_finish (cholmod_common *) ;

Purpose: This must be the last call to CHOLMOD.

10.5 cholmod defaults: set default parameters

int cholmod_defaults
(

cholmod_common *Common

)

int cholmod_1_defaults (cholmod_common *) ;

Purpose: Sets the default parameters.

10.6 cholmod maxrank: maximum update/downdate rank

size_t cholmod_maxrank /* returns validated value of Common->maxrank */

(
/* —---- input ---- %/
size_t n, /* A and L will have n rows */
[* ———m— *x/
cholmod_common *Common
)

size_t cholmod_1l_maxrank (size_t, cholmod_common *) ;

Purpose: Returns the maximum rank for an update/downdate.

58

10.7 cholmod_allocate_work: allocate workspace

int cholmod_allocate_work

(
/* —---- input ---- %/
size_t nrow, /* size: Common->Flag (nrow), Common->Head (nrow+1) */
size_t iworksize, /* size of Common->Iwork */
size_t xworksize, /* size of Common->Xwork */
[k ——mmm— */
cholmod_common *Common
)

int cholmod_1l_allocate_work (size_t, size_t, size_t, cholmod_common *) ;

Purpose: Allocates workspace in Common. The workspace consists of the integer Head, Flag, and
Iwork arrays, of size nrow+1, nrow, and iworksize, respectively, and a double array Xwork of size
xworksize. The Head array is normally equal to -1 when it is cleared. If the Flag array is cleared,
all entries are less than Common->mark. The Iwork array is not kept in any particular state. The
integer type is int or long, depending on whether the cholmod_ or cholmod_1_ routines are used.

10.8 cholmod free work: free workspace

int cholmod_free_work
(

cholmod_common *Common

int cholmod_1_free_work (cholmod_common *) ;

Purpose: Frees the workspace in Common.

10.9 cholmod clear _flag: clear Flag array

UF_long cholmod_clear_flag
(

cholmod_common *Common

UF_long cholmod_l_clear_flag (cholmod_common *) ;

Purpose: Increments Common->mark so that the Flag array is now cleared.

59

10.10 cholmod_error: report error

int cholmod_error

(

/* —---- input ---- */

int status, /* error status */

char *file, /* name of source code file where error occured */

int line, /* line number in source code file where error occured*/
char *message, /* error message */

[k ——————————————— */

cholmod_common *Common

)

int cholmod_1_error (int, char *, int, char *, cholmod_common *) ;

Purpose: This routine is called when CHOLMOD encounters an error. It prints a mes-
sage (if printing is enabled), sets Common->status. It then calls the user error handler routine
Common->error_handler, if it is not NULL.

10.11 cholmod dbound: bound diagonal of L

double cholmod_dbound /* returns modified diagonal entry of D or L */

(

/* —---- input ---- %/
double dj, /* diagonal entry of D for LDL’ or L for LL’ */
[k ——mm——— */

cholmod_common *Common

)

double cholmod_1_dbound (double, cholmod_common *) ;

Purpose: Ensures that entries on the diagonal of L for an LLT factorization are greater than or
equal to Common->dbound. For an LDLT factorization, it ensures that the magnitude of the entries
of D are greater than or equal to Common->dbound.

10.12 cholmod_hypot: sqrt(x*xx+y*y)

double cholmod_hypot
(
/* —---- input ---- %/
double x, double y
)

double cholmod_l_hypot (double, double) ;

Purpose: Computes the magnitude of a complex number. This routine is the default value for
the Common->hypotenuse function pointer. See also hypot, in the standard math.h header. If
you have the ANSI C99 hypot, you can use Common->hypotenuse = hypot. The cholmod hypot
routine is provided in case you are using the ANSI C89 standard, which does not have hypot.

60

10.13 cholmod divcomplex: complex divide

int cholmod_divcomplex /* return 1 if divide-by-zero, O otherise */
(

/* —---- input ---- %/

double ar, double ai, /* real and imaginary parts of a */

double br, double bi, /* real and imaginary parts of b */

/* —---- output --- */

double *cr, double *ci /* real and imaginary parts of c */
)

int cholmod_1l_divcomplex (double, double, double, double, double *, double *) ;

Purpose: Divides two complex numbers. It returns 1 if a divide-by-zero occurred, or 0 otherwise.
This routine is the default value for the Common->complex_divide function pointer. This return
value is the single exception to the CHOLMOD rule that states all int return values are TRUE
if successful or FALSE otherwise. The exception is made to match the return value of a different
complex divide routine that is not a part of CHOLMOD), but can be used via the function pointer.

61

11 Core Module: cholmod sparse object

11.1 cholmod_sparse: compressed-column sparse matrix

typedef struct cholmod_sparse_struct

{

size_t nrow ; /* the matrix is nrow-by-ncol */
size_t ncol ;
size_t nzmax ; /* maximum number of entries in the matrix */

/* pointers to int or UF_long: */
void *p ; /* p [0..ncol], the column pointers */
void *i ; /* i [0..nzmax-1], the row indices */

/* for unpacked matrices only: */

void *nz ; /* nz [0..ncol-1], the # of nonzeros in each col. In
* packed form, the nonzero pattern of column j is in
* A->i [A->p [j] ... A->p [j+1]1-1]. 1In unpacked form, column j is in
* A->i [A->p [j] ... A->p [jl1+A->nz[j]-1] instead. In both cases, the
* numerical values (if present) are in the corresponding locations in
* the array x (or z if A->xtype is CHOLMOD_ZOMPLEX). */

/* pointers to double or float: */

void *x ; /* size nzmax or 2*nzmax, if present */

void *z ; /* size nzmax, if present */

int stype ; /* Describes what parts of the matrix are considered:
*

0: matrix is "unsymmetric": use both upper and lower triangular parts

*
* (the matrix may actually be symmetric in pattern and value, but
* both parts are explicitly stored and used). May be square or

* rectangular.

* >0: matrix is square and symmetric, use upper triangular part.

* Entries in the lower triangular part are ignored.

* <0: matrix is square and symmetric, use lower triangular part.

* Entries in the upper triangular part are ignored.

*

*

*

*

Note that stype>0 and stype<O are different for cholmod_sparse and
cholmod_triplet. See the cholmod_triplet data structure for more

details.
*/

int itype ; /* CHOLMOD_INT: p, i, and nz are int.
* CHOLMOD_INTLONG: p is UF_long, i and nz are int.
* CHOLMOD_LONG: p, i, and nz are UF_long. */

int xtype ; /* pattern, real, complex, or zomplex */

int dtype ; /* x and z are double or float */

int sorted ; /* TRUE if columns are sorted, FALSE otherwise */

int packed ; /* TRUE if packed (nz ignored), FALSE if unpacked

* (nz is required) */

} cholmod_sparse ;

Purpose: Stores a sparse matrix in compressed-column form.

62

11.2 cholmod allocate _sparse: allocate sparse matrix

cholmod_sparse *cholmod_allocate_sparse

(
/* —---- input ---- */
size_t nrow, /* # of rows of A */
size_t ncol, /* # of columns of A */
size_t nzmax, /* max # of nonzeros of A */
int sorted, /* TRUE if columns of A sorted, FALSE otherwise */
int packed, /* TRUE if A will be packed, FALSE otherwise */
int stype, /* stype of A */
int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */
[* ——mmm e */
cholmod_common *Common
)

cholmod_sparse *cholmod_l_allocate_sparse (size_t, size_t, size_t, int, int,
int, int, cholmod_common *) ;

Purpose: Allocates a sparse matrix. A->i, A->x, and A->z are not initialized. The matrix
returned is all zero, but it contains space enough for nzmax entries.

11.3 cholmod free_sparse: free sparse matrix

int cholmod_free_sparse

(
/* —---— in/out --- */
cholmod_sparse **A, /* matrix to deallocate, NULL on output */
[k —mmmmm e */
cholmod_common *Common
)

int cholmod_1_free_sparse (cholmod_sparse %%, cholmod_common *) ;

Purpose: Frees a sparse matrix.

11.4 cholmod reallocate sparse: reallocate sparse matrix

int cholmod_reallocate_sparse

(
/* —-—-— input ---- */
size_t nznew, /* new # of entries in A */
/* —-——— in/out --- */
cholmod_sparse *A, /* matrix to reallocate */
[k ——mm—— */
cholmod_common *Common

)

int cholmod_1l_reallocate_sparse (size_t, cholmod_sparse *, cholmod_common *)

Purpose: Reallocates a sparse matrix, so that it can contain nznew entries.

63

11.5 cholmod nnz: number of entries in sparse matrix

UF_long cholmod_nnz

(
/* —---- input ---- */
cholmod_sparse *A,
[k ———————————— */
cholmod_common *Common
)

UF_long cholmod_l_nnz (cholmod_sparse *, cholmod_common *) ;

Purpose: Returns the number of entries in a sparse matrix.

11.6 cholmod