
SIMH AltairZ80 1 of 28

AltairZ80 Simulator Usage

05-Jan-2007
COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code for the AltairZ80 part published in 2002-2007, written by Peter Schorn

Copyright (c) 2002-2007, Peter Schorn

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL PETER SCHORN BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Peter Schorn shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from Peter Schorn.

Based on work by Charles E Owen (c) 1997

SIMH AltairZ80 2 of 28

1 Simulator Files ...3
2 Revision History ...3
3 Background ..4
4 Hardware..4

4.1 CPU ..4
4.2 The Serial I/O Card (2SIO)..7
4.3 The SIMH pseudo device..8
4.4 The 88-DISK controller..8
4.5 The simulated hard disk ..9
4.6 The simulated network ..9

5 Sample Software..9
5.1 CP/M Version 2.2 ..9
5.2 CP/M Version 3 with banked memory ...12
5.3 MP/M II with banked memory..15
5.4 CP/NET...18
5.5 CPNOS ...19
5.6 CP/M application software ..19
5.7 MITS Disk Extended BASIC Version 4.1...21
5.8 Altair DOS Version 1.0 ..22
5.9 Altair Basic 3.2 (4k) ...22
5.10 Altair 8k Basic ...23
5.11 Altair Basic 4.0 ..24
5.12 Altair Disk Extended Basic Version 300-5-C ...24
5.13 Altair Disk Extended Basic Version 5.0 ...25
5.14 Altair programming languages VTL-2 and MINOL ..25

6 Special simulator feature: Memory access breakpoints ...25
7 Brief summary of all major changes to the original Altair simulator26
8 Appendix: Python script for converting MBL files to plain binary files.........................26

SIMH AltairZ80 3 of 28

This memorandum documents the Altair 8800 Simulator with Z80 support.

1 Simulator Files

sim/scp.h

sim_console.h

sim_defs.h

sim_fio.h

sim_rev.h

sim_sock.h

sim_timer.h

sim_tmxr.h

scp.c

sim_console.c

sim_fio.c

sim_sock.c

sim_timer.c

sim_tmxr.c

sim/AltairZ80/altairz80_defs.h

altairz80_cpu.c

altairz80_dsk.c

altairz80_hdsk.c

altairz80_net.c

altairz80_sio.c

altairz80_sys.c

2 Revision History
– 05-Jan-2007, Peter Schorn (added networking capability, included CP/NET and CPNOS)

– 26-Nov-2006, Peter Schorn (SIO can now be attached to a file, SIO rewritten for better efficiency)

– 15-Oct-2006, Peter Schorn (updated CP/M 2 operating system and application software description)

– 17-Sep-2006, Peter Schorn (added Altair Basic 5.0 to the sample software, corrected TTY/ANSI
description)

– 21-Aug-2006, Peter Schorn (added MINOL and VTL-2 software, retyping courtesy of Emmanuel
ROCHE, fixed a bug in memory breakpoints and added a create (“C”) switch to the attach command)

– 24-Jan-2006, Peter Schorn (transcribed documentation to Word / PDF format)

– 05-Apr-2005, Peter Schorn (removed bogus t-state stepping support)

– 24-Jul-2004, Peter Schorn (updated CP/M 2 and SPL packages)

SIMH AltairZ80 4 of 28

– 12-Apr-2004, Peter Schorn (added MAP/NOMAP capability to switch off key mapping)

– 26-Jan-2004, Peter Schorn (added support for t-state stepping)

– 25-Feb-2003, Peter Schorn (added support for real time simulation)

– 9-Oct-2002, Peter Schorn (added support for simulated hard disk)

– 28-Sep-2002, Peter Schorn (number of tracks per disk can be configured)

– 19-Sep-2002, Peter Schorn (added WARNROM feature)

– 31-Aug-2002, Peter Schorn (added extended ROM features suggested by Scott LaBombard)

– 4-May-2002, Peter Schorn (added description of MP/M II sample software)

– 28-Apr-2002, Peter Schorn (added periodic timer interrupts and three additional consoles)

– 15-Apr-2002, Peter Schorn (added memory breakpoint)

– 7-Apr-2002, Peter Schorn (added ROM / NOROM switch)

Original version of this document written by Charles E Owen

3 Background
The MITS (Micro Instrumentation and Telemetry Systems) Altair 8800 was announced on the January 1975
cover of Popular Electronics, which boasted you could buy and build this powerful computer kit for only
$397. The kit consisted at that time of only the parts to build a case, power supply, card cage (18 slots),
CPU card, and memory card with 256 *bytes* of memory. Still, thousands were ordered within the first few
months after the announcement, starting the personal computer revolution as we know it today.

Many laugh at the small size of that first kit, noting there were no peripherals and the 256 byte memory size.
But the computer was an open system, and by 1977 MITS and many other small startups had added many
expansion cards to make the Altair quite a respectable little computer. The "Altair Bus" that made this
possible was soon called the S-100 Bus, later adopted as an industry standard, and eventually became the
IEE-696 Bus.

4 Hardware
We are simulating a fairly "loaded" Altair 8800 from about 1977, with the following configuration:

CPU Altair 8800 with Intel 8080 CPU board 62KB of RAM, 2K of EPROM with start boot ROM.

SIO MITS 88-2SIO Dual Serial Interface Board. Port 1 is assumed to be connected to a serial "glass
TTY" that is your terminal running the Simulator.

PTR Paper Tape Reader attached to port 2 of the 2SIO board.

PTP Paper Tape Punch attached to port 2 of the 2SIO board. This also doubles as a printer port.

DSK MITS 88-DISK Floppy Disk controller with up to eight drives.

4.1 CPU
We have 2 CPU options that were not present on the original machine but are useful in the simulator. We
also allow you to select memory sizes, but be aware that some sample software requires the full 64K (i.e.
CP/M) and the MITS Disk Basic and Altair DOS require about a minimum of 24K.

SET CPU 8080 Simulates the 8080 CPU (normal)

SIMH AltairZ80 5 of 28

SET CPU Z80 Simulates the Z80 CPU. Note that some software (e.g. most original
Altair software such as 4K Basic) requires an 8080 CPU and will not or
not properly run on a Z80. This is mainly due to the use of the parity
flag on the 8080 which has not always the same semantics on the Z80.

SET CPU ITRAP Causes the simulator to halt if an invalid opcode is detected (depending
on the chosen CPU).

SET CPU NOITRAP Does not stop on an invalid opcode. This is how the real 8080 works.
Note that some software such as 4K Basic apparently tries to execute
nonexistent 8080 instructions. Therefore it is advisable in this case to
SET CPU NOITRAP.

SET CPU 4K

SET CPU 8K

SET CPU 12K

SET CPU 16K

… (in 4K steps)

SET CPU 64K All these set various CPU memory configurations.

SET CPU BANKED Enables the banked memory support. The simulated memory has eight
banks with address range 0..’COMMON’ (see registers below) and a
common area from ‘COMMON’ to 0FFFF which is common to all banks.
The currently active bank is determined by register 'BANK' (see below).
You can only switch to banked memory if the memory is set to 64K. The
banked memory is used by CP/M 3.

SET CPU NONBANKED Disables banked memory support.

SET CPU ROM Enables the ROM from address 'ROMLOW' to 'ROMHIGH' (see below
under CPU Registers) and prevents write access to these locations.
This is the default setting.

SET CPU NOROM Disables the ROM.

SET CPU ALTAIRROM Enables the slightly modified but downwards compatible Altair boot
ROM at addresses 0FF00 to 0FFFF. This is the default.

SET CPU NOALTAIRROM Disables standard Altair ROM behavior.

SET CPU WARNROM Enables warning messages to be printed when the CPU attempts to
write into ROM or into non-existing memory. Also prints a warning
message if the CPU attempts to read from non-existing memory.

SET CPU NOWARNROM Suppresses all warning message of "WARNROM". Note that some
software tries on purpose to write to ROM in order to detect the
available RAM.

The BOOT EPROM card starts at address 0FF00 if it has been enabled by 'SET CPU ALTAIRROM'.
Jumping to this address will boot drive 0 of the floppy controller (CPU must be set to ROM or equivalent
code must be present). If no valid bootable software is present there the machine crashes. This is
historically accurate behavior.

The real 8080, on receiving a HLT (Halt) instruction, freezes the processor and only an interrupt or CPU
hardware reset will restore it. The simulator is a lot nicer, it will halt but send you back to the simulator
command line.

SIMH AltairZ80 6 of 28

CPU Registers include the following:

Name Size Comment

PC 16 The Program Counter

AF 16 The accumulator (8 bits) and the flag register

F = S Z - AC - P/V N C

S = Sign flag.

Z = Zero Flag.

- = not used (undefined)

AC = Auxiliary Carry flag.

P/V = Parity flag on 8080 (Parity / Overflow flag on Z80)

- = not used (undefined)

N = Internal sign flag

C = Carry flag.

BC 16 The BC register pair.

Register B is the high 8 bits, C is the lower 8 bits

DE 16 The DE register pair.

Register D is the high 8 bits, E is the lower 8 bits.

HL 16 The HL register pair.

Register H is the high 8 bits, L is the lower 8 bits.

AF1 16 The alternate AF register (on Z80 only)

BC1 16 The alternate BC register (on Z80 only)

DE1 16 The alternate DE register (on Z80 only)

HL1 16 The alternate HL register (on Z80 only)

IX 16 The IX index register (on Z80 only)

IY 16 The IY index register (on Z80 only)

IFF 8 Interrupt flag (on Z80 only)

INT 8 Interrupt register (on Z80 only)

SR 16 The front panel switches (use D SR 8 for 4k Basic).

WRU 8 The interrupt character. This starts as 5 (Control-E) but some Altair software uses
this keystroke so best to change this to something exotic such as 035 (which is
Control-]).

BANK 3 The currently active memory bank (if banked memory is activated - see memory
options above)

COMMON 16 The starting address of common memory. Originally set to 0C000 (note this
setting must agree with the value supplied to GENCPM for CP/M 3 system
generation)

ROMLOW 16 The starting address of the ROM. Default is 0FF00.

ROMHIGH 16 The final address of the ROM. Default is 0FFFF.

SIMH AltairZ80 7 of 28

CLOCK 32 The clock speed of the simulated CPU in kHz or 0 to run at maximum speed. To
set the clock speed for a typical 4 MHz Z80 CPU, use D CLOCK 4000. The
CP/M utility SPEED measures the clock speed of the simulated CPU.

4.2 The Serial I/O Card (2SIO)
This simple programmed I/O device provides 2 serial ports to the outside world, which could be hardware
jumpered to support RS-232 plugs or a TTY current loop interface. The standard I/O addresses assigned by
MITS was 10-11 (hex) for the first port, and 12-13 (hex) for the second. We follow this standard in the
simulator.

The simulator directs I/O to/from the first port to the screen. The second port reads from an attachable "tape
reader" file on input, and writes to an attachable "punch file" on output. These files are considered a simple
stream of 8-bit bytes.

The SIO can be configured in SIMH with the following commands:

SET SIO ANSI Bit 8 is set to zero on console output

SET SIO TTY Bit 8 is not touched on console output

SET SIO ALL Console input remain unchanged

SET SIO UPPER Console input is transformed to upper case characters only (This
feature is useful for most Altair software). SET SIO MAP must also
have been executed for this option to take effect - otherwise no
mapping occurs.

SET SIO BS Map the delete character to backspace SET SIO MAP must also have
been executed for this option to take effect - otherwise no mapping
occurs.

SET SIO DEL Map the backspace character to delete SET SIO MAP must also have
been executed for this option to take effect - otherwise no mapping
occurs.

SET SIO QUIET Do not print warning messages

SET SIO VERBOSE Print warning messages (useful for debugging) The register SIOWL
determines how often the same warning is displayed. The default is 3.

SET SIO MAP Enable mapping of characters (see also SET SIO ALL/UPPER/BS/DEL)

SET SIO NOMAP Disable mapping of characters (see also SET SIO
ALL/UPPER/BS/DEL)

SET SIO BELL Displaying ^G (Control-G) sounds the bell

SET SIO NOBELL Do not display ^G (Control-G, bell character. This feature is useful
when a simulated program makes excessive use of the bell character.

You can also attach the SIO to a port or a file:

ATTACH SIO 23 Console IO goes via a Telnet connection on port 23 (often requires root
privileges, you can also use another port and use telnet with this port)

ATTACH SIO <filename> Console input is taken from the file with name <filename> and output
goes to the SIMH console. Note that sometimes this does not work as
expected since some application programs or operating system
commands periodically check for input.

DETACH SIO Console IO goes via the regular SIMH console

SIMH AltairZ80 8 of 28

4.3 The SIMH pseudo device
The SIMH pseudo device facilitates the communication between the simulated ALTAIR and the simulator
environment. This device defines a number of (most R/O) registers (see source code) which are primarily
useful for debugging purposes.

The SIMH pseudo device can be configured with

SET SIMH QUIET Do not print warning messages

SET SIMH VERBOSE Print warning messages (useful for debugging)

SET SIMH TIMERON Start periodic timer interrupts

SET SIMH TIMEROFF Stop the periodic timer interrupts

The following variables determine the behavior of the timer:

TIMD This is the delay between consecutive interrupts in milliseconds. Use D TIMD 20 for a 50 Hz
clock.

TIMH This is the address of the interrupt handler to call for a timer interrupt.

4.4 The 88-DISK controller
The MITS 88-DISK is a simple programmed I/O interface to the MITS 8-inch floppy drive, which was
basically a Pertec FD-400 with a power supply and buffer board built-in. The controller supports neither
interrupts nor DMA, so floppy access required the sustained attention of the CPU. The standard I/O
addresses were 8, 9, and 0A (hex), and we follow the standard. Details on controlling this hardware are in
the altairz80_dsk.c source file.

The only difference is that the simulated disks may be larger than the original ones: The original disk had 77
tracks while the simulated disks support up to 254 tracks (only relevant for CP/M). You can change the
number of tracks per disk by setting the appropriate value in TRACKS[..]. For example "D TRACKS[0] 77"
sets the number of tracks for disk 0 to the original number of 77. The command "D TRACKS[0-7] 77"
changes the highest track number for all disks to 77.

For debugging purposes you can set the trace level of some disk I/O functions. To do so the following bits in
TRACE (a register of the disk) have been defined with the following meaning:

1 Trace all IN and OUT instructions on the disk ports 8 and 9

2 Trace all read and writes to full sectors on the disk

4 Print a message whenever an unnecessary step-in or step out of the disk head occurs
(often an indication of an infinite loop)

8 Print a message whenever the disk head appears to be waiting for a sector which does not
show up (often an indication of an infinite loop)

For example the command "D TRACE 10" will trace options 2+8 from above.

The DSK device can be configured with

SET DSK<n> QUIET Do not print warning messages for disk <n>.

SET DSK<n> VERBOSE Print warning messages for disk <n> (useful for debugging). The
register DSKWL determines how often the same warning is displayed.
The default is 3.

SET DSK<n>WRITEENABLED Allow write operations for disk <n>.

SIMH AltairZ80 9 of 28

SET DSK<n> LOCKED Disk <n> is locked, i.e. no write operations will be allowed.

4.5 The simulated hard disk
In order to increase the available storage capacity, the simulator features 8 simulated hard disks with a
capacity of 8MB (HDSK0 to HDSK7). Currently only CP/M supports two hard disks as devices I: and J:.

For debugging purposes one can set the trace flag by executing the command "D HDTRACE 1". The default
for "HDTRACE" is 0 (no trace).

The HDSK device can be configured with

SET HDSK<n> QUIET Do not print warning messages for hard disk <n>.

SET HDSK<n> VERBOSE Print warning messages for hard disk <n> (useful for debugging).

SET HDSK<n> WRITEENABLED Allow write operations for hard disk <n>.

SET HDSK<n> LOCKED Hard disk <n> is locked, i.e. no write operations will be allowed.

4.6 The simulated network
The simulator supports networking via sockets (TCP/IP) for simulating operating systems such as CP/NET
(see section 5.4) and CPNOS (see section 5.5) which require at least two machines connected by a
network.

The NET device can be configured with

SET NET CLIENT Puts this machine into client mode.

SET NET SERVER Puts this machine into server mode.

ATTACH NET <IP-addr>:<port> Attaches the machine to the given IP address and listening on the
specified port. The IP address is given in a.b.c.d format (0 ≤ a, b, c, d ≤
255). A typical example is “ATTACH NET 127.0.0.1:4000” which
attaches to the local host at port 4000. Note that certain “small” port
numbers might require special permissions.

DETACH NET Detaches the machine from the network.

5 Sample Software
Running an Altair in 1977 you would be running either MITS Disk Extended BASIC, or the brand new and
sexy CP/M Operating System from Digital Research. Or possibly, you ordered Altair DOS back when it was
promised in 1975, and are still waiting for it to be delivered in early 1977.

We have samples of all three for you to check out. We can't go into the details of how they work, but we'll
give you a few hints.

5.1 CP/M Version 2.2
This version is my own port of the standard CP/M to the Altair. There were some "official" versions but I don't
have them. None were endorsed or sold by MITS to my knowledge, however.

To boot CP/M:

SIMH AltairZ80 10 of 28

sim> attach dsk cpm2.dsk

sim> boot dsk

CP/M feels like DOS, sort of. DIR will work. I have included all the standard CP/M utilities, plus a few
common public-domain ones. I also include the sources to the customized BIOS and some other small
programs. TYPE will print an ASCII file. DUMP will dump a binary one. LS is a better DIR than DIR. ASM will
assemble .ASM files to hex, LOAD will "load" them to binary format (.COM). ED is a simple editor, #A
command will bring the source file to the buffer, T command will "type" lines, L will move lines, E exits the
editor. 20L20T will move down 20 lines, and type 20. Very DECish. DDT is the debugger, DO is a batch-type
command processor. A sample batch file that will assemble and write out the bootable CP/M image (on drive
A) is "SYSCPM2.SUB". To run it, type "DO SYSCPM2".

In order to efficiently transfer files into the CP/M environment use the included program R <filename.ext>. If
you have a file named foo.ext in the current directory (i.e. the directory where SIMH is), executing R
FOO.EXT under CP/M will transfer the file onto the CP/M disk. Transferring a file from the CP/M
environment to the SIMH environment is accomplished by W <filename.ext> for text files or by W
<filename.ext> B for binary files. The simplest way for transferring multiple files is to create a ".SUB" batch
file which contains the necessary R resp. W commands.

If you need more storage space you can use a simulated hard disk on drives I: and J:. To use do "attach
HDSK0 hdi.dsk" and issue the "XFORMAT I:" resp. "XFORMAT J:" command from CP/M do initialize the
disk to an empty state.

The disk "cpm2.dsk" contains the following files:

Name Ext Size Comment

ASM .COM 8K CP/M assembler

BDOS .MAC 66K Basic Disk Operating System assembler source code

BOOT .COM 2K transfer control to boot ROM

BOOT .MAC 2K source for BOOT.COM

BOOTGEN .COM 2K put a program on the boot sectors

CBIOSX .MAC 48K CP/M 2 BIOS source for Altair

CCP .MAC 26K Console Command Processor assembler source code, original Digital
Research

CCPZ .MAC 50K Console Command Processor assembler source code, Z80 replacement
with some extra features

CCPZ .TXT 40K documentation for CCPZ

CFGCCP .LIB 2K configuration file for system generation, original CCP

CFGCCPZ .LIB 2K configuration file for system generation, with CCPZ

COPY .COM 2K copy disks

CPU .COM 2K get and set the CPU type (8080 or Z80)

CPU .MAC 2K source for CPU.COM

CREF80 .COM 4K cross reference utility

DDT .COM 6K 8080 debugger

DDTZ .COM 10K Z80 debugger

DIF .COM 4K determine differences between two files

SIMH AltairZ80 11 of 28

Name Ext Size Comment

DO .COM 4K batch processing with SuperSub (SUBMIT.COM replacement)

DSKBOOT .MAC 8K source for boot ROM

DUMP .COM 2K hex dump a file

ED .COM 8K line editor

ELIZA .BAS 10K Eliza game in Basic

EX .MAC 48K source for EX8080.COM, EXZ80DOC.COM, EXZ80ALL.COM

EX .SUB 2K benchmark execution of
EX8080.COM,EXZ80DOC.COM,EXZ80ALL.COM

EX8080 .COM 12K exercise 8080 instruction set

EXZ80ALL .COM 12K exercise Z80 instruction set, undefined status bits taken into account

EXZ80DOC .COM 12K exercise Z80 instruction set, no undefined status bits taken into account

FORMAT .COM 2K format disks

GO .COM 0K start the currently loaded program at 100H

HALT .COM 2K execute the HALT operation for returning to the sim> command prompt –
useful as the last command in a script

HDSKBOOT .MAC 6K boot code for hard disk

L80 .COM 12K Microsoft linker

LADDER .COM 40K game

LADDER .DAT 2K high score file for LADDER.COM

LIB80 .COM 6K library utility

LOAD .COM 2K load hex files

LS .COM 4K directory utility

LU .COM 20K library utility

M80 .COM 20K Microsoft macro assembler

MBASIC .COM 24K Microsoft Basic interpreter

MC .SUB 2K assemble and link an assembler program

MCC .SUB 2K read, assemble and link an assembler program

MCCL .SUB 2K assemble, link and produce listing

MOVER .MAC 2K moves operating system in place

OTHELLO .COM 12K Othello (Reversi) game

PIP .COM 8K Peripheral Interchange Program

PRELIM .COM 2K preliminary CPU tests

PRELIM .MAC 6K source code for PRELIM.COM

R .COM 4K read files from SIMH environment. Supports wild card expansion on
UNIX and Windows for reading multiple files.

RSETSIMH .COM 2K reset SIMH interface

SIMH AltairZ80 12 of 28

Name Ext Size Comment

RSETSIMH .MAC 2K assembler source for RSETSIMH.COM

SHOWSEC .COM 2K show sectors on a disk

SID .COM 8K debugger for 8080

SPEED .COM 2K utility to measure the clock speed of the simulated CPU

STAT .COM 6K provide information about currently logged disks

SUBMIT .COM 2K batch processing

SURVEY .COM 2K system survey

SURVEY .MAC 16K assembler source for SURVEY.COM

SYSCOPY .COM 2K copy system tracks between disks

SYSCPM2 .SUB 2K create CP/M 2 on drive A:, Digital Research CCP and BDOS

SYSCPM2Z .SUB 2K Create CP/M 2 on drive A:, CCPZ and Digital Research BDOS

TIMER .COM 2K perform various timer operations

TIMER .MAC 2K source code for TIMER.COM

UNCR .COM 8K un-crunch utility

UNERA .COM 2K un-erase a file

UNERA .MAC 16K source for UNERA.COM

USQ .COM 2K un-squeeze utility

W .COM 2K write files to SIMH environment. Supports CP/M wild card expansion for
writing multiple files.

WM .COM 12K word master screen editor

WM .HLP 4K help file for WM.COM

WORM .COM 4K worm game for VT100 terminal

XFORMAT .COM 2K initialize a drive (floppy or hard disk)

XSUB .COM 2K support for DO.COM

ZAP .COM 10K SuperZap 5.2 disk editor configured for VT100

ZSID .COM 10K debugger for Z80

ZTRAN4 .COM 4K translate 8080 mnemonics into Z80 equivalents

5.2 CP/M Version 3 with banked memory
CP/M 3 is the successor to CP/M 2.2. A customized BIOS (BIOS3.MAC) is included to facilitate modification
if so desired. The defaults supplied in GENCPM.DAT for system generation can be used. BOOTGEN.COM
is used to place the CP/M loader (LDR.COM) on the boot tracks of a disk.

Running CP/M 3 with banked memory:

sim> attach dsk cpm3.dsk

sim> reset cpu

sim> set cpu banked

SIMH AltairZ80 13 of 28

sim> set cpu itrap

sim> boot dsk

Executing "DO SYSCPM3" will re-generate the banked version of CP/M 3. You can boot CP/M 3 with or
without a Z80 CPU. The Z80 CPU is needed for both sysgens due to the use of BOOTGEN.COM which
requires it.

The disk "cpm3.dsk" contains the following files:

Name Ext Size Comment

ASM .COM 8K CP/M assembler

ASSIGN .SYS 2K

BDOS3 .SPR 10K

BIOS3 .MAC 28K CP/M 3 BIOS source for Altair SIMH

BIOS3 .SPR 4K

BNKBDOS3 .SPR 14K

BNKBIOS3 .SPR 4K

BOOT .COM 2K transfer control to boot ROM

BOOTGEN .COM 2K put a program on the boot sectors

CCP .COM 4K

COPYSYS .COM 2K

CPM3 .SYS 18K

CPMLDR .MAC 38K CP/M 3 loader assembler source

DATE .COM 4K date utility

DDT .COM 6K 8080 debugger

DDTZ .COM 10K Z80 debugger

DEFS .LIB 2K include file for BIOS3.MAC to create banked CP/M 3

DEVICE .COM 8K

DIF .COM 4K determine differences between two files

DIR .COM 16K directory utility

DO .COM 6K batch processing (SUBMIT.COM)

DUMP .COM 2K

ED .COM 10K

ERASE .COM 4K

GENCOM .COM 16K

GENCPM .COM 22K

GENCPM .DAT 4K CP/M generation information for banked version

GENCPMNB .DAT 4K CP/M generation information for non-banked version

GET .COM 8K

SIMH AltairZ80 14 of 28

Name Ext Size Comment

HELP .COM 8K help utility

HELP .HLP 62K help files

HEXCOM .CPM 2K

HIST .UTL 2K

INITDIR .COM 32K

L80 .COM 12K Microsoft linker

LDR .COM 4K CP/M loader with optimized loader BIOS

LDRBIOS3 .MAC 14K optimized (for space) loader BIOS

LIB .COM 8K Digital Research librarian

LINK .COM 16K Digital Research linker

LOAD .COM 2K

M80 .COM 20K Microsoft macro assembler

MC .SUB 2K assemble and link an assembler program

MCC .SUB 2K read, assemble and link an assembler program

PATCH .COM 4K

PIP .COM 10K Peripheral Interchange Program

PROFILE .SUB 2K commands to be executed at start up

PUT .COM 8K

R .COM 4K read files from SIMH environment

RENAME .COM 4K

RESBDOS3 .SPR 2K

RMAC .COM 14K Digital Research macro assembler

RSETSIMH .COM 2K reset SIMH interface

SAVE .COM 2K

SCB .MAC 2K

SET .COM 12K

SETDEF .COM 6K

SHOW .COM 10K

SHOWSEC .COM 4K show sectors on a disk

SID .COM 8K 8080 debugger

SYSCOPY .COM 2K copy system tracks between disks

SYSCPM3 .SUB 2K create banked CP/M 3 system

TRACE .UTL 2K

TSHOW .COM 2K show split time

SIMH AltairZ80 15 of 28

Name Ext Size Comment

TSTART .COM 2K create timer and start it

TSTOP .COM 2K show final time and stop timer

TYPE .COM 4K

UNERA .COM 2K un-erase a file

W .COM 4K write files to SIMH environment

XREF .COM 16K cross reference utility

ZSID .COM 10K Z80 debugger

5.3 MP/M II with banked memory
MP/M II is an acronym for MultiProgramming Monitor Control Program for Microprocessors. It is a multi-user
operating system for an eight bit microcomputer. MP/M II supports multiprogramming at each terminal. This
version supports four terminals available via Telnet. To boot:

sim> attach dsk mpm.dsk

sim> set cpu itrap

sim> set cpu z80

sim> set cpu rom

sim> set cpu banked

sim> attach sio 23

sim> d common b000

sim> boot dsk

Now connect a Telnet session to the simulator and type "MPM" at the "A>" prompt. Now you can connect up
to three additional terminals via Telnet to the Altair running MP/M II. To re-generate the system perform "DO
SYSMPM" in the CP/M environment (not possible under MP/M since XSUB is needed).

The disk "mpm.dsk" contains the following files:

Name Ext Size Comment

ABORT .PRL 2K abort a process

ABORT .RSP 2K

ASM .PRL 10K MP/M assembler

BNKBDOS .SPR 12K banked BDOS

BNKXDOS .SPR 2K banked XDOS

BNKXIOS .SPR 4K banked XIOS

BOOTGEN .COM 2K copy an executable to the boot section

CONSOLE .PRL 2K print console number

CPM .COM 2K return to CP/M

CPM .MAC 2K source for CPM.COM

DDT .COM 6K MP/M DDT

SIMH AltairZ80 16 of 28

Name Ext Size Comment

DDT2 .COM 6K CP/M DDT

DDTZ .COM 10K CP/M DDT with Z80 support

DIF .COM 4K difference between two files

DIR .PRL 2K directory command

DO .COM 2K batch processing (SUBMIT.COM)

DSKRESET .PRL 2K disk reset command

DUMP .MAC 6K source for DUMP.PRL

DUMP .PRL 2K dump command

ED .PRL 10K MP/M line editor

ERA .PRL 2K erase command

ERAQ .PRL 4K erase command (verbose)

GENHEX .COM 2K

GENMOD .COM 2K

GENSYS .COM 10K

L80 .COM 12K Microsoft linker

LDRBIOS .MAC 14K loader BIOS

LIB .COM 8K library utility

LINK .COM 16K linker

LOAD .COM 2K loader

M80 .COM 20K Microsoft macro assembler

MC .SUB 2K assemble and link an assembler program

MCC .SUB 2K read, assemble and link an assembler program

MPM .COM 8K start MP/M II

MPM .SYS 26K MP/M system file

MPMD .LIB 2K define a banked system

MPMLDR .COM 6K MP/M loader without LDRBIOS

MPMSTAT .BRS 6K status of MP/M system

MPMSTAT .PRL 6K

MPMSTAT .RSP 2K

MPMXIOS .MAC 26K XIOS for MP/M

PIP .PRL 10K MP/M peripheral interchange program

PIP2 .COM 8K CP/M peripheral interchange program

PRINTER .PRL 2K

PRLCOM .PRL 4K

SIMH AltairZ80 17 of 28

Name Ext Size Comment

R .COM 4K read a file from the SIMH environment

RDT .PRL 8K debugger for page relocatable programs

REN .PRL 4K rename a file

RESBDOS .SPR 4K non-banked BDOS

RMAC .COM 14K Digital Research macro assembler

RSETSIMH .COM 2K reset SIMH interface

SCHED .BRS 2K schedule a job

SCHED .PRL 4K

SCHED .RSP 2K

SDIR .PRL 18K fancy directory command

SET .PRL 8K set parameters

SHOW .PRL 8K show status of disks

SPOOL .BRS 4K spool utility

SPOOL .PRL 4K

SPOOL .RSP 2K

STAT .COM 6K CP/M stat command

STAT .PRL 10K MP/M stat command

STOPSPLR .PRL 2K stop spooler

SUBMIT .PRL 6K MP/M submit

SYSCOPY .COM 2K copy system tracks

SYSMPM .SUB 2K do a system generation

SYSTEM .DAT 2K default values for system generation

TMP .SPR 2K

TOD .PRL 4K time of day

TSHOW .COM 2K show split time

TSTART .COM 2K create timer and start it

TSTOP .COM 2K show final time and stop timer

TYPE .PRL 2K type a file on the screen

USER .PRL 2K set user area

W .COM 4K write a file to SIMH environment

XDOS .SPR 10K XDOS

XREF .COM 16K cross reference utility

XSUB .COM 2K for CP/M DO

SIMH AltairZ80 18 of 28

5.4 CP/NET
This software is included as part of the archive cpnet.zip. To bring up the server component:

sim> attach dsk cpnetserver.dsk

sim> d common ab00

sim> set cpu 64k

sim> set cpu itrap

sim> set cpu z80

sim> set cpu rom

sim> set cpu banked

sim> set simh timeroff

sim> attach sio 23

sim> set net server

sim> at net 127.0.0.1:4000

sim> boot dsk

You can also execute “AltairZ80 cpnetserver” for the same effect or type “do cpnetserver<return>” at the
“sim>” command prompt. Then connect via Telnet to the simulator and type “mpm <return>” at the “0A>”
command prompt to start the MP/M CP/NET server.

To bring up a client, start another instance of AltairZ80 and type the following at the command prompt:

sim> attach dsk cpnetclient.dsk

sim> set cpu 64k

sim> set cpu noitrap

sim> set cpu z80

sim> set cpu altairrom

sim> set cpu nonbanked

sim> reset cpu

sim> set sio ansi

sim> set net client

sim> at net 127.0.0.1:4000

sim> boot dsk

You can also execute “AltairZ80 cpnetclient” for the same effect or type “do cpnetclient<return>” at the
“sim>” command prompt. Then

A>cpnetldr<return> ; loads CP/NET client

A>login<return> ; to login

A>network b:=a: ; to map server drive A: to client drive B:

A>dir b: ; shows the contents of the server drive A:

The MP/M server is configured to accept one or two network clients. So you can repeat the previous
procedure for a second client if you wish.

SIMH AltairZ80 19 of 28

Note that all system specific sources (SNIOS.MAC, NETWRKIF.MAC, MPMXIOS.MAC) are included on
cpnetclient.dsk respectively cpnetserver.dsk. When executing “GENSYS” for re-creating MP/M, keep in mind
to include SERVER.RSP and NETWRKIF.RSP as this is not automatically suggested by GENSYS.

5.5 CPNOS
CPNOS is a thin client front-end for the CP/NET server. This software is also included as part of the archive
cpnet.zip. In order to execute, first bring up a CP/NET server as described in section 5.4. Then for the
client, start another instance of AltairZ80:

sim> set cpu 64k

sim> set cpu noitrap

sim> set cpu z80

sim> set cpu noaltairrom

sim> set cpu norom

sim> set cpu nonbanked

sim> reset cpu

sim> set sio ansi

sim> set net client

sim> at net 127.0.0.1:4000

sim> load cpnos.com f000

sim> g f000

For the same effect you can also execute “AltairZ80 cpnos” or type “do cpnos<return>” at the “sim>”
command prompt. At the “LOGIN=” prompt, just type return and you will see the familiar “A>” prompt but the
drive is the A: drive of the MP/M CP/NET server (you can also attach other disks to the server and they will
become available to the CPNOS client). You can also connect a second CPNOS client to the same CP/NET
server – further connection attempts will block after logging in until another CPNOS client is disconnected
(e.g. by typing ^E to stop the simulator and then typing “bye<return>” at the simh command prompt). It is
also possible to have both a CP/NET client and a CPNOS thin client connect to the same CP/NET server.

Note that all system specific sources (CPBIOS.MAC and CPNIOS.MAC) are included on cpnetclient.dsk.

5.6 CP/M application software
There is also a small collection of sample application software containing the following items:

- SPL a Small Programming Language with a suite of sample programs

- PROLOGZ a Prolog interpreter written in SPL with sources

- PASCFORM a Pascal pretty printer written in Pascal

- Pascal MT+ Pascal language system needed to compile PASCFORM

The sample software comes on "app.dsk" and to use it do

sim> attach dsk1 app.dsk

before booting CP/M.

The disk "app.dsk" contains the following files:

SIMH AltairZ80 20 of 28

Name Ext Size Comment

ACKER .COM 2K compute the Ackermann function

ACKER .SPL 4K compute the Ackermann function, SPL source

BOOTGEN .COM 2K copy the operating system to the rights sectors and tracks

BOOTGEN .SPL 6K SPL source for BOOTGEN.COM

C .SUB 2K batch file for compiling an SPL source file

CALC .PRO 4K Prolog demo program: Calculator

DIF .COM 4K

DIF .SPL 10K SPL source for DIF.COM

FAC .COM 2K compute the factorial

FAC .SPL 4K compute the factorial, SPL source

FAMILY .PRO 4K Prolog demo program: Family relations

FORMEL .COM 4K calculator

FORMEL .SPL 6K calculator, SPL source

INTEGER .PRO 2K Prolog demo program: Integer arithmetic

KNAKE .PRO 2K Prolog demo program: Logic puzzle

LINKMT .COM 12K Pascal MT+ 5.5 linker

MTERRS .TXT 6K Pascal MT+ error messages

MTPLUS .000 14K Pascal MT+ 5.5 compiler file

MTPLUS .001 12K Pascal MT+ 5.5 compiler file

MTPLUS .002 8K Pascal MT+ 5.5 compiler file

MTPLUS .003 8K Pascal MT+ 5.5 compiler file

MTPLUS .004 18K Pascal MT+ 5.5 compiler file

MTPLUS .005 8K Pascal MT+ 5.5 compiler file

MTPLUS .006 6K Pascal MT+ 5.5 compiler file

MTPLUS .COM 36K Pascal MT+ 5.5 compiler

PASCFORM .COM 36K Pascal formatter

PASCFORM .PAS 54K Pascal formatter source code

PASCFORM .SUB 2K create Pascal formatter

PASLIB .ERL 24K Pascal MT+ 5.5 run time library

PINST .COM 4K terminal installation program for PROLOGZ

PINST .SPL 16K terminal installation program for PROLOGZ, SPL source

PRIM .COM 2K compute prime numbers

PRIM .SPL 2K compute prime numbers, SPL source

PROLOGZ .COM 16K PROLOGZ interpreter and screen editor

SIMH AltairZ80 21 of 28

Name Ext Size Comment

PROLOGZ .SPL 54K SPL source for PROLOGZ

PROLOGZ .TXT 40K PROLOGZ documentation in German

PROLOGZU .MAC 2K helper functions for PROLOGZ in assembler

QUEEN .PRO 2K Prolog demo program: N-queens problem

READ .COM 4K transfer a file from the file system to the CP/M disk, see also
WRITE.COM

READ .SPL 10K SPL source for READ.COM

RELDUMP .COM 4K dump a .REL file to the console

RELDUMP .SPL 10K dump a .REL file to the console, SPL source

SHOWSEC .COM 2K show a disk sector

SHOWSEC .SPL 6K SPL source for SHOWSEC.COM

SIEVE .COM 2K compute prime numbers with a sieve

SIEVE .SPL 6K compute prime numbers with a sieve, SPL source

SPEED .COM 2K utility to measure the clock speed of the simulated CPU

SPEED .SPL 4K SPL source for SPEED.COM

SPL .COM 28K the SPL compiler itself

SPL .TXT 50K SPL language and compiler documentation

SPLERROR .DAT 8K error messages of the compiler

SPLRTLB .REL 2K SPL runtime library

SYSCOPY .COM 2K copy the system tracks between disks

SYSCOPY .SPL 6K SPL source for SYSCOPY.COM

WC .COM 6K word count and query facility

WC .SPL 14K word count and query facility, SPL source

WRITE .COM 2K write a CP/M file to the file system, see also READ.COM

WRITE .SPL 8K SPL source for W.COM

XFORMAT .COM 2K format a regular disk or a hard disk

XFORMAT .SPL 6K SPL source for XFORMAT.COM

5.7 MITS Disk Extended BASIC Version 4.1
This was the commonly used software for serious users of the Altair computer. It is a powerful (but slow)
BASIC with some extended commands to allow it to access and manage the disk. There was no operating
system it ran under. This software is part of the archive altsw.zip. To boot:

sim> set cpu 8080 ;Z80 will not work

sim> attach dsk mbasic.dsk

sim> set sio upper

sim> go ff00

SIMH AltairZ80 22 of 28

MEMORY SIZE? [return]

LINEPRINTER? [C return]

HIGHEST DISK NUMBER? [0 return] (0 here = 1 drive system)

NUMBER OF FILES? [3 return]

NUMBER OF RANDOM FILES? [2 return]

44041 BYTES FREE

ALTAIR BASIC REV. 4.1

[DISK EXTENDED VERSION]

COPYRIGHT 1977 BY MITS INC.

OK

[MOUNT 0]

OK

[FILES]

5.8 Altair DOS Version 1.0
This was long promised but not delivered until it was almost irrelevant. A short attempted tour will reveal it to
be a dog, far inferior to CP/M. This software is part of the archive altsw.zip. To boot:

sim> d tracks[0-7] 77 ;set to Altair settings

sim> set cpu altairrom

sim> attach dsk altdos.dsk

sim> set sio upper

sim> go ff00

MEMORY SIZE? [return]

INTERRUPTS? N [return]

HIGHEST DISK NUMBER? [0 return] (3 here = 4 drive system)

HOW MANY DISK FILES? [3 return]

HOW MANY RANDOM FILES? [2 return]

056449 BYTES AVAILABLE

DOS MONITOR VER 1.0

COPYRIGHT 1977 BY MITS INC

.[MNT 0]

.[DIR 0]

5.9 Altair Basic 3.2 (4k)
In order to run the famous 4k Basic, use the following commands (the trick is to get the Switch Register
right). This software is part of the archive altsw.zip.

SIMH AltairZ80 23 of 28

sim> set cpu 8080 ;note 4k Basic will not run on a Z80 CPU

sim> set sio upper ;4k Basic does not like lower case letters as input

sim> set cpu noitrap ;4k Basic likes to execute non 8080 instructions-ignore

sim> set sio ansi ;4k Basic produces 8-bit output, strip to seven bits

sim> d sr 8 ;good setting for the Switch Register

sim> load 4kbas.bin 0 ;load it at 0

sim> go 0 ;and start it

MEMORY SIZE? [return]

TERMINAL WIDTH? [return]

WANT SIN? [Y]

61911 BYTES FREE

BASIC VERSION 3.2

[4K VERSION]

OK

5.10 Altair 8k Basic
Running 8k Basic follows the procedure for 4k Basic. This software is part of the archive altsw.zip.

sim> set cpu 8080 ;note 8k Basic will not run on a Z80 CPU

sim> set sio upper ;8k Basic does not like lower case letters as input

sim> set sio ansi ;8k Basic produces 8-bit output, strip to seven bits

sim> d sr 8 ;good setting for the Switch Register

sim> load 8kbas.bin 0 ;load it at 0

sim> go 0 ;and start it

MEMORY SIZE? [A]

WRITTEN FOR ROYALTIES BY MICRO-SOFT

MEMORY SIZE? [return]

TERMINAL WIDTH? [return]

WANT SIN-COS-TAN-ATN? [Y]

58756 BYTES FREE

ALTAIR BASIC REV. 4.0

[EIGHT-K VERSION]

SIMH AltairZ80 24 of 28

COPYRIGHT 1976 BY MITS INC.

OK

5.11 Altair Basic 4.0
This software is part of the archive altsw.zip. Execute the following commands to run Altair Extended Basic:

sim> set sio upper ;Extended Basic requires upper case input

sim> set sio ansi ;Extended Basic produces 8-bit output, strip to 7 bits

sim> d sr 8 ;good setting for the Switch Register

sim> load exbas.bin 0 ;load it at 0

sim> go 0 ;and start it

16384 Bytes loaded at 0.

MEMORY SIZE? [return]

WANT SIN-COS-TAN-ATN? [Y]

50606 BYTES FREE

ALTAIR BASIC REV. 4.0

[EXTENDED VERSION]

COPYRIGHT 1977 BY MITS INC.

OK

5.12 Altair Disk Extended Basic Version 300-5-C
This version of Basic was provided by Scott LaBombard. This software is part of the archive altsw.zip. To
execute use the following commands:

sim> d tracks[0-7] 77 ;set to Altair settings

sim> at dsk extbas5.dsk

sim> g 0

MEMORY SIZE? [return]

LINEPRINTER? [C]

HIGHEST DISK NUMBER? [0]

HOW MANY FILES? [3]

HOW MANY RANDOM FILES? [3]

42082 BYTES FREE

ALTAIR DISK EXTENDED BASIC

VERSION 300-5-C [01NOV78]

SIMH AltairZ80 25 of 28

COPYRIGHT 1978 BY MITS INC.

OK

5.13 Altair Disk Extended Basic Version 5.0
This version of Basic can be found on Andrew Kessel’s http://www.altairage.com/ site. Note that the MBL
files on this site need to be converted to plain binary files using the Python script in the appendix. This
software is part of the archive altsw.zip. To execute use the following commands:

sim> d tracks[0-7] 77 ;set to Altair settings

sim> at dsk disbas50.dsk

sim> d sr 8

sim> load disbas50.bin 0

sim> g 0

MEMORY SIZE? [return]

LINEPRINTER? [C]

HIGHEST DISK NUMBER? [return]

HOW MANY FILES? [3]

HOW MANY RANDOM FILES? [3]

41695 BYTES FREE

ALTAIR BASIC 5.0 [14JUL78]

[DISK EXTENDED VERSION]

COPYRIGHT 1978 BY MITS INC.

OK

5.14 Altair programming languages VTL-2 and MINOL
Emmanuel ROCHE retyped the manuals and assembler code for these two tiny languages. You need the
archive minolvtl.zip which contains full documentation, sources and command files to execute the
simulator.

6 Special simulator feature: Memory access breakpoints
In addition to the regular SIMH features such as PC queue, breakpoints etc., this simulator supports memory
access breakpoints. A memory access breakpoint is triggered when a pre-defined memory location is
accessed (read, write or update). To set a memory location breakpoint enter

sim> break -m <location>

Execution will stop whenever an operation accesses <location>. Note that a memory access breakpoint is
not triggered by fetching code from memory (this is the job of regular breakpoints). This feature has been
implemented by using the typing facility of the SIMH breakpoints.

SIMH AltairZ80 26 of 28

7 Brief summary of all major changes to the original Altair
simulator

– Full support for Z80. CP/M software requiring a Z80 CPU now runs properly. DDTZ and PROLOGZ are
included for demonstration purposes.

– Added banked memory support.

– PC queue implemented.

– Full assembler and dis-assembler support for Z80 and 8080 mnemonics. Depending on the current
setting of the CPU, the appropriate mnemonics are used.

– The BOOT ROM was changed to fully load the software from disk. The original code basically loaded a
copy of itself from the disk and executed it.

– ROM and memory size settings are now fully honored. This means that you cannot write into the ROM
or outside the defined RAM (e.g. when the RAM size was truncated with the SET CPU commands). This
feature allows programs which check for the size of available RAM to run properly (e.g. 4k Basic). In
addition one can enable and disable the ROM which is useful in special cases (e.g. when testing a new
version of the ROM).

– The console can also be used via Telnet. This is useful when a terminal is needed which supports
cursor control such as a VT100. PROLOGZ for example has a built-in screen editor which works under
Telnet.

– Simplified file exchange for CP/M. Using the READ program under CP/M one can easily import files into
CP/M from the regular file system. Note that PIP does not work properly on non-text files on PTR.

– The WRITE program can be used to transfer files from the CP/M environment to the regular
environment (binary or ASCII transfer).

– The last character read from PTR is always Control-Z (the EOF character for CP/M). This makes sure
that PIP (Peripheral Interchange Program on CP/M) will terminate properly.

– Fixed a bug in the BIOS warm boot routine which caused CP/M to crash.

– Modified the BIOS for CP/M to support 8 disks.

– Added CP/M 3 banked version as sample software

– Changed from octal to hex

– Made the DSK and SIO device more robust (previously malicious code could crash the simulator)

– Added memory access break points

– Added periodic timer interrupts (useful for MP/M)

– Added additional consoles (useful for MP/M)

– Added MP/M II banked version as sample software

– Added networking support for CP/NET and CPNOS

8 Appendix: Python script for converting MBL files to plain
binary files

#! /usr/bin/python
-*- coding: UTF-8 -*-
formatted for tab-stops 4
#

SIMH AltairZ80 27 of 28

By Peter Schorn, peter.schorn@acm.org, September 2006
#
#
Transform an MBL file to a binary file suitable for loading with SIMH
#
Structure of MBL files is as follows:
<byte>+ 0x00 0x00
(checkSum<byte> 0x3c count<byte> loadLow<byte> loadHigh<byte>
<byte> * count)+
where the lower 8 bit of the load address are determined by loadLow
and the upper 8 bit of the load address are determined by loadHigh
For checkSum the following rules hold:
For the first load record: 0
For the second load record: (sum of all load bytes of the first
load record) mod 256
For the third and higher load records: (sum of all load bytes of
the preceding load record - 1) mod 256
A header with count = 0 or second position is unequal to 0x3c denotes
end of file.

import sys

CHR0 = 2 # i.e. first header is prefixed by 2 chr(0)

if len(sys.argv) <> 3:
print 'Usage %s inputmbl.bin output.bin\n' % sys.argv[0]
sys.exit(1)

f = file(sys.argv[1], 'rb')
b = f.read()
f.close()
i = b.index(chr(0) * CHR0 + chr(0) + chr(0x3c)) + CHR0 + 2
result = [chr(0)] * len(b)

k = 0
count = ord(b[i])
while count and (ord(b[i - 1]) == 0x3c):

l = ord(b[i + 1]) + (ord(b[i + 2]) << 8)
checkSum = 0
for j in range(count):

result[l + j] = b[i + 3 + j]
checkSum += ord(b[i + 3 + j])

expectedCheckSum = ord(b[i-2])
receivedCheckSum = expectedCheckSum
if k == 1:

receivedCheckSum = previousCheckSum & 255
elif k > 1:

receivedCheckSum = (previousCheckSum - 1) & 255
if receivedCheckSum <> expectedCheckSum:

print 'Checksum error in record %i. Got %02X and expected %02X ' % (
k, receivedCheckSum, expectedCheckSum)

i += count + 5
count = ord(b[i])
k += 1
previousCheckSum = checkSum

i = len(result)

SIMH AltairZ80 28 of 28

while result[i - 1] == chr(0):
i -= 1

f = file(sys.argv[2], 'wb+')
for c in result[:i]:

f.write(c)
f.close()
print '%i load records processed and %i bytes written to %s' % (k, i,

sys.argv[2])

