
VAX-11/780 Simulator Usage
30-Jan-2007

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2007, written by Robert M Supnik
Copyright (c) 1993-2007, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from Robert M Supnik.

1 Simulator Files ...3
2 VAX780 Features...4

2.1 CPU and System Devices ..5
2.1.1 CPU...5
2.1.2 Translation Buffer (TLB) ..7
2.1.3 SBI Controller (SBI) ...7
2.1.4 Memory Controllers (MCTL0, MCTL1)...7
2.1.5 Time-Of-Day Clock (TODR)...8
2.1.6 Interval Timer (TMR)..8
2.1.7 Unibus Adapter (UBA) ...8
2.1.8 Massbus Adapters (MBA0, MBA1) ..9

2.2 I/O Device Addressing ..9
2.3 Programmed I/O Devices ...10

2.3.1 Console Input (TTI)..10
2.3.2 Console Output (TTO) ...11
2.3.3 RX01 Console Floppy Disk (RX) ...11
2.3.4 Line Printer (LPT) ..12

2.4 Disks...12
2.4.1 RP04/05/06/07, RM02/03/05/80 Disk Pack Drives (RP)12
2.4.2 RL11/RL01/RL02 Cartridge Disk (RL) ...13
2.4.3 RK611/RK06/RK07 Cartridge Disk (HK)..14
2.4.4 UDA50 MSCP Disk Controllers (RQ, RQB, RQC, RQD)15

2.5 Tapes..17
2.5.1 TM03/TE16/TU45/TU77 Magnetic Tapes (TU)..17
2.5.2 TS11 Magnetic Tape (TS) ...17
2.5.3 TUK50 TMSCP Disk Controller (TQ) ...18

2.6 Communications Devices ...20
2.6.1 DZ11 Terminal Multiplexer (DZ) ..20

2.7 CR11 Card Reader (CR) ..21
3 Symbolic Display and Input..23

This memorandum documents the DEC VAX-11/780 simulator.

1 Simulator Files

To compile the VAX-11/780, you must define VM_VAX, VAX780, and USE_INT64 as part of the compilation
command line. To enable extended file support (files greater than 2GB), you must define USE_ADDR64 as
part of the command line as well.

sim/ scp.h
 sim_console.h
 sim_defs.h
 sim_ether.h
 sim_fio.h
 sim_rev.h
 sim_sock.h
 sim_tape.h
 sim_timer.h
 sim_tmxr.h
 scp.c
 sim_console.c
 sim_ether.c
 sim_fio.c
 sim_sock.c
 sim_tape.c
 sim_timer.c
 sim_tmxr.c

sim/vax/ vax_defs.h
 vax780_defs.h
 vax_cis.c
 vax_cmode.c
 vax_cpu.c
 vax_cpu1.c
 vax_fpa.c
 vax_mmu.c
 vax_octa.c
 vax_sys.c
 vax_syscm.c
 vax780_mba.c
 vax780_mem.c
 vax780_sbi.c
 vax780_stddev.c
 vax780_syslist.c
 vax780_uba.c

sim/pdp11/ pdp11_cr_dat.h

pdp11_mscp.h
 pdp11_uqssp.h
 pdp11_xu.h
 pdp11_cr.c
 pdp11_dz.c
 pdp11_hk.c
 pdp11_lp.c
 pdp11_rl.c

 pdp11_rp.c
 pdp11_rq.c
 pdp11_ry.c
 pdp11_tq.c
 pdp11_ts.c
 pdp11_tu.c
 pdp11_xu.c

Additional files are:

sim/vax/ vmb.exe standard boot code

2 VAX780 Features

The VAX780 simulator is configured as follows:

device name(s) simulates

CPU VAX-11/780 CPU

TLB translation buffer

SBI system bus controller

MCTL0,MTCL1 memory controllers, MS780C with 4MB memory each,

or MS780E with 8MB-64MB each

UBA DW780 Unibus adapter

MBA0,MBA1 RH780 Massbus adapters

TODR time-of-day clock

TMR interval timer

TTI,TTO console terminal

RX console RX01 floppy disk

DZ DZ11 8-line terminal multiplexer (up to 4)

CR CR11 card reader

LPT LP11 line printer

RP RP04/05/06/07, RM02/03/05/80 Massbus disks, up to

eight

HK RK611/RK06(7) cartridge disk controller with eight

drives

RL RL11/RL01(2) cartridge disk controller with four drives

RQ UDA50 MSCP controller with four drives

RQB second UDA50 MSCP controller with four drives

RQC third UDA50 MSCP controller with four drives

RQD fourth UDA50 MSCP controller with four drives

RY RX211 floppy disk controller with two drives

TS TS11 magnetic tape controller with one drive

TQ TUK50 TMSCP magnetic tape controller with four drives

TU TM03 tape formatter with eight TE16/TU45/TU77 drives

XU DEUNA/DELUA Ethernet controller

XUB second DEUNA/DELUA Ethernet controller

The DZ, LPT, RP, RL, RQ, RQB, RQC, RQD, RY, TS, TQ, TU, XU, and XUB devices can be set
DISABLED. RQB, RQC, RQD, VH, XU, and XUB are disabled by default.

The VAX780 simulator implements several unique stop conditions:

- Change mode to interrupt stack

- Illegal vector (bits<1:0> = 2 or 3)
- Unexpected exception during interrupt or exception
- Process PTE in P0 or P1 space instead of system space
- Unknown IPL
- Infinite loop (BRB/W to self at IPL 1F)

The LOAD command supports a simple binary format, consisting of a stream of binary bytes without origin or

checksum, for loading memory. The DUMP command is not implemented.

2.1 CPU and System Devices

2.1.1 CPU

CPU options include the size of main memory and the treatment of the HALT instruction.

 SET CPU 8M set memory size = 8MB

 SET CPU 16M set memory size = 16MB

 SET CPU 32M set memory size = 32MB

 SET CPU 48M set memory size = 48MB

 SET CPU 64M set memory size = 64MB

 SET CPU 128M set memory size = 128MB

The CPU implements a show command to display the I/O address map:

 SHOW CPU IOSPACE show I/O space address map

The CPU also implements a command to display a virtual to physical address translation:

 SHOW {-kesu} CPU VIRTUAL=n show translation for address n

 in kernel/exec/supervisor/user mode

Notes on memory size:

- The first version of the VAX-11/780 used MS780C controllers, which supported 1-4MB of
memory per controller. This is the only memory controller recognized by VMS V1. MS780E
controllers supported 4MB-64MB per controller.

- The controller type is set automatically based on memory size.

Initial memory size is 8MB.

Memory can be loaded with a binary byte stream using the LOAD command. The LOAD command

recognizes three switches:

 -o origin argument follows file name

 -r load ROM in memory controller 0

 -s load ROM in memory controller 1

These switches are recognized when examining or depositing in CPU memory:

 -b examine/deposit bytes

 -w examine/deposit words

 -l examine/deposit longwords

 -d data radix is decimal

 -o data radix is octal

 -h data radix is hexadecimal

 -m examine (only) VAX instructions

 -p examine/deposit PDP-11 (compatibility mode) instructions

 -r examine (only) RADIX50 encoded data

 -v interpret address as virtual, current mode

 -k interpret address as virtual, kernel mode

 -e interpret address as virtual, executive mode

 -s interpret address as virtual, supervisor mode

 -u interpret address as virtual, user mode

CPU registers include the visible state of the processor as well as the control registers for the interrupt
system.

 name size comments

 PC 32 program counter

 R0..R14 32 R0..R14

 AP 32 alias for R12

 FP 32 alias for R13

 SP 32 alias for R14

 PSL 32 processor status longword

 CC 4 condition codes, PSL<3:0>

 KSP 32 kernel stack pointer

 ESP 32 executive stack pointer

 SSP 32 supervisor stack pointer

 USP 32 user stack pointer

 IS 32 interrupt stack pointer

 SCBB 32 system control block base

 PCBB 32 process controll block base

 P0BR 32 P0 base register

 P0LR 22 P0 length register

 P1BR 32 P1 base register

 P1LR 22 P1 length register

 SBR 32 system base register

 SLR 22 system length register

 SISR 16 software interrupt summary register

 ASTLVL 4 AST level register

 MAPEN 1 memory management enable

 PME 1 performance monitor enable

 TRPIRQ 8 trap/interrupt pending

 CRDERR 1 correctible read data error flag

 MEMERR 1 memory error flag

 PCQ[0:63] 32 PC prior to last PC change or interrupt;

 most recent PC change first

 WRU 8 interrupt character

The CPU attempts to detect when the simulator is idle. When idle, the simulator does not use any resources
on the host system. Idle detection is controlled by the SET IDLE and SET NOIDLE commands:

 SET CPU IDLE enable idle detection

 SET CPU NOIDLE disable idle detection

Idle detection is disabled by default. The CPU is considered idle if it spends more than 200 cycles at IPL’s
0, 1, or 3, in kernel mode. This works for VMS, NetBSD, FreeBSD, and BSD, but not for Ultrix.

The CPU can maintain a history of the most recently executed instructions. This is controlled by the SET

CPU HISTORY and SHOW CPU HISTORY commands:

 SET CPU HISTORY clear history buffer

 SET CPU HISTORY=0 disable history

 SET CPU HISTORY=n enable history, length = n

 SHOW CPU HISTORY print CPU history

 SHOW CPU HISTORY=n print first n entries of CPU history

The maximum length for the history is 65536 entries.

2.1.2 Translation Buffer (TLB)

The translation buffer consists of two units, representing the system and user translation buffers,
respectively. It has no registers. Each translation buffer entry consists of two 32b words, as follows:

 word n tag

 word n+1 cached PTE

An invalid entry is indicated by a tag of 0xFFFFFFFF.

2.1.3 SBI Controller (SBI)

The SBI is the VAX-11/780 system bus. The simulated SBI implements these registers:

 name size comments

 NREQ14 16 Nexus IPL14 interrupt requests

 NREQ15 16 Nexus IPL15 interrupt requests

 NREQ16 16 Nexus IPL16 interrupt requests

 NREQ17 16 Nexus IPL17 interrupt requests

 WCSA 16 writeable control store address

 WCSD 32 writeable control store data

 MBRK 13 microbreak register

 SBIFS 32 SBI fault status

 SBISC 32 SBI silo compare

 SBIMT 32 SBI maintenance register

 SBIER 32 SBI error status

 SBITMO 32 SBI timeout address

2.1.4 Memory Controllers (MCTL0, MCTL1)

The memory controllers implement the registers for the MS780C (8MB memory) or MS780E (16MB or
greater memory). Each controller implements these registers:

 name size comments

 CRA 32 control register A

 CRB 32 control register B

 CRC 32 control register C

 CRD 32 control register D (MS780E only)

 ROM[0:1023] 32 bootstrap ROM

ROM can be loaded from a file with the commands

 LOAD -R <file> load MCTL0 ROM

 LOAD -S <file> load MCTL1 ROM

2.1.5 Time-Of-Day Clock (TODR)

The TODR tracks time since an arbitrary start in 1 microsecond intervals. It has these registers:

 name size comments

 TODR 32 time-of-day register

 TIME 24 delay between ticks

The TODR register autocalibrates against real-world time.

2.1.6 Interval Timer (TMR)

The interval timer implements the VAX architectural timer, with 1 microsecond intervals. It has these
registers:

 name size comments

 ICCS 32 interval timer control and status

 ICR 32 interval count register

 NICR 32 next interval count register

 INT 1 interrupt request

For standard VMS intervals (10 milliseconds), the interval timer autocalibrates against real-world time.

2.1.7 Unibus Adapter (UBA)

The Unibus adapter (UBA) simulates the DW780. It recognizes these options:

 SET UBA AUTOCONFIGURE enable autoconfiguration

 SET UBA NOAUTOCONFIGURE disable autoconfiguration

and this SHOW command:

 SHOW UBA IOSPACE display IO address space assignments

The UBA also implements a command to display a Unibus address to physical address translation:

 SHOW UBA VIRTUAL=n show translation for Unibus address n

Finally, the UBA implements main memory examination and modification via the Unibus map. The data
width is always 16b:

 EX UBA 0/10 examine main memory words corresponding

to Unibus addresses 0-10

The UBA has these registers:

 name size comments

 IPL14 32 Unibus IPL14 interrupt requests

 IPL15 32 Unibus IPL15 interrupt requests

 IPL16 32 Unibus IPL16 interrupt requests

 IPL17 32 Unibus IPL17 interrupt requests

 CNFR 32 configuration register

 CR 32 control register

 SR 32 status register

 DR 32 diagnostic register

 INT 1 internal UBA interrupt request

 NEXINT 1 UBA Nexus interrupt request

 AIIP 1 adapter initialization in progress flag

 UIIP 1 Unibus initialization in progress flag

 FMER 32 failing memory address

 FUBAR 32 failing UBA map register

 BRSVR0 32 spare register 0

 BRSVR1 32 spare register 1

 BRSVR2 32 spare register 2

 BRSVR3 32 spare register 3

 BRRVR4 32 vector register, IPL 14

 BRRVR5 32 vector register, IPL 15

 BRRVR6 32 vector register, IPL 16

 BRRVR7 32 vector register, IPL 17

 DPR[0:15] 32 data path registers 0..15

 MAP[0:495] 32 map registers 0..495

 AITIME 24 adapter initialization time

 UITIME 24 Unibus initialization time

2.1.8 Massbus Adapters (MBA0, MBA1)

The Massbus adapters (MBA0, MBA1) simulate RH780's. MBA0 is assigned to the RP disk drives, MBA1 to
the TU tape drives. Each MBA has these registers:

 name size comments

 CNFR 32 configuration register

 CR 32 control register

 SR 32 status register

 VA 17 virtual address register

 BC 32 byte count register

 DR 32 diagnostic register

 SMR 32 selected map register

 MAP[0:255] 32 map registers

 NEXINT 1 MBA Nexus interrupt request

2.2 I/O Device Addressing

Unibus I/O space is not large enough to allow all possible devices to be configured simultaneously at fixed
addresses. Instead, many devices have floating addresses; that is, the assigned device address depends
on the presence of other devices in the configuration:

 DZ11 all instances have floating addresses

 RL11 first instance has fixed address, rest floating

 RX11/RX211 first instance has fixed address, rest floating

 DEUNA/DELUA first instance has fixed address, rest floating

 MSCP disk first instance has fixed address, rest floating

 TMSCP tape first instance has fixed address, rest floating

To maintain addressing consistency as the configuration changes, the simulator implements DEC's standard
I/O address and vector autoconfiguration algorithms for devices DZ, RL, RY, XU, RQ, and TQ. This allows
the user to enable or disable devices without needing to manage I/O addresses and vectors.

Autoconfiguration cannot solve address conflicts between devices with overlapping fixed addresses. For
example, with default I/O page addressing, the PDP-11 can support either a TUK50 or a TS11, but not both,
since they use the same I/O addresses.

In addition to autoconfiguration, most devices support the SET <device> ADDRESS command, which

allows the I/O page address of the device to be changed, and the SET <device> VECTOR command,

which allows the vector of the device to be changed. Explicitly setting the I/O address of a device that
normally uses autoconfiguration DISABLES autoconfiguration for that device and for the entire system. As a
consequence, the user may have to manually configure all other autoconfigured devices, because the
autoconfiguration algorithm no longer recognizes the explicitly configured device. A device can be reset to
autoconfigure with the SET <device> AUTOCONFIGURE command. Autoconfiguration can be restored for

the entire system with the SET CPU AUTOCONFIGURE command.

The current I/O map can be displayed with the SHOW CPU IOSPACE command. Addresses that have set by

autoconfiguration are marked with an asterisk (*).

All devices support the SHOW <device> ADDRESS and SHOW <device> VECTOR commands, which

display the device address and vector, respectively.

2.3 Programmed I/O Devices

2.3.1 Console Input (TTI)

The terminal interfaces (TTI, TTO) can be set to one of three modes, 7P, 7B or 8B:

 mode input characters output characters

 7P high-order bit cleared high-order bit cleared,

 non-printing characters suppressed

 7B high-order bit cleared high-order bit cleared

 8B no changes no changes

The default mode is 8B.

When the console terminal is attached to a Telnet session, it recognizes BREAK. If BREAK is entered, and
BDR<7> is set, control returns to the console firmware; otherwise, BREAK is treated as a normal terminal
input condition.

The terminal input (TTI) polls the console keyboard for input. It implements these registers:

 name size comments

 BUF 8 last data item processed

 CSR 16 control/status register

 INT 1 interrupt pending flag

 ERR 1 error flag (CSR<15>)

 DONE 1 device done flag (CSR<7>)

 IE 1 interrupt enable flag (CSR<6>)

 POS 32 number of characters input

 TIME 24 input polling interval (if 0, the keyboard

 is polled synchronously with the TODR)

2.3.2 Console Output (TTO)

The terminal output (TTO) writes to the simulator console window. It implements these registers:

 name size comments

 BUF 8 last data item processed

 CSR 16 control/status register

 INT 1 interrupt pending flag

 ERR 1 error flag (CSR<15>)

 DONE 1 device done flag (CSR<7>)

 IE 1 interrupt enable flag (CSR<6>)

 POS 32 number of characters input

 TIME 24 time from I/O initiation to interrupt

2.3.3 RX01 Console Floppy Disk (RX)

RX01 options include the ability to set units write enabled or write locked:

 SET RXn LOCKED set unit n write locked

 SET RXn WRITEENABLED set unit n write enabled

The RX01 implements a special command, FLOAD, for loading VAX executables from an RT11-formatted

console floppy disk image:

 FLOAD <file_name> {<origin>}

FLOAD searches the floppy disk image attached to the RX01 for the named file and then loads it into VAX-

11/780 memory starting at the origin. If no origin is specified, the default origin is 200 (hex).

The RX01 implements these registers:

 name size comments

 FNC 8 function select

 ES 8 error status

 ECODE 8 error code

 TA 8 track address

 SA 8 sector address

 STATE 4 protocol state

 BPTR 7 data buffer pointer

 CTIME 24 command initiation delay

 STIME 24 seek time delay, per track

 XTIME 24 transfer time delay, per byte

 STOP_IOE 1 stop on I/O error

 DBUF[0:127] 8 data buffer

Error handling is as follows:

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 disk not ready

RX01 data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur.

2.3.4 Line Printer (LPT)

The line printer (LPT) writes data to a disk file. The POS register specifies the number of the next data item
to be written. Thus, by changing POS, the user can backspace or advance the printer.

The line printer implements these registers:

 name size comments

 BUF 8 last data item processed

 CSR 16 control/status register

 INT 1 interrupt pending flag

 ERR 1 error flag (CSR<15>)

 DONE 1 device done flag (CSR<7>)

 IE 1 interrupt enable flag (CSR<6>)

 POS 32 position in the output file

 TIME 24 time from I/O initiation to interrupt

 STOP_IOE 1 stop on I/O error

Error handling is as follows:

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 out of paper

 OS I/O error x report error and stop

2.4 Disks

All VAX-11/780 disks, and the TUK50 MSCP tape, support a special form of the boot command, with the
following syntax:

 BOOT <unit>{/R5:<value>}

For example,

 BOOT RP0/R5:1

The optional switch, /R5, specifies that R5 is to be loaded with the specified value prior to booting. If the
switch is omitted, R5 is loaded with 0.

2.4.1 RP04/05/06/07, RM02/03/05/80 Disk Pack Drives (RP)

The RP controller implements the Massbus family of large disk drives. RP options include the ability to set
units write enabled or write locked, to set the drive type to one of six disk types, or autosize, and to write a
DEC standard 044 compliant bad block table on the last track:

 SET RPn LOCKED set unit n write locked

 SET RPn WRITEENABLED set unit n write enabled

 SET RPn RM03 set type to RM03

 SET RPn RM05 set type to RM05

 SET RPn RM80 set type to RM80

 SET RPn RP04 set type to RP04

 SET RPn RP06 set type to RP06

 SET RPn RP07 set type to RP07

 SET RPn AUTOSIZE set type based on file size at attach

 SET RPn BADBLOCK write bad block table on last track

The type options can be used only when a unit is not attached to a file. The bad block option can be used
only when a unit is attached to a file. Units can be set ENABLED or DISABLED. The RP controller supports

the BOOT command.

The RP controller implements the registers listed below. Registers suffixed with [0:7] are replicated per
drive.

 name size comments

 CS1[0:7] 16 current operation

 DA[0:7] 16 desired surface, sector

 DS[0:7] 16 drive status

 ER1[0:7] 16 drive errors

 OF[0:7] 16 offset

 DC[0:7] 16 desired cylinder

 ER2[0:7] 16 error status 2

 ER3[0:7] 16 error status 3

 EC1[0:7] 16 ECC syndrome 1

 EC2[0:7] 16 ECC syndrome 2

 MR[0:7] 16 maintenance register

 MR2[0:7] 16 maintenance register 2 (RM only)

 HR[0:7] 16 holding register (RM only)

 STIME 24 seek time, per cylinder

 RTIME 24 rotational delay

 STOP_IOE 1 stop on I/O error

Error handling is as follows:

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 disk not ready

 end of file x assume rest of disk is zero

 OS I/O error x report error and stop

2.4.2 RL11/RL01/RL02 Cartridge Disk (RL)

RL11 options include the ability to set units write enabled or write locked, to set the drive type to RL01,
RL02, or autosize, and to write a DEC standard 044 compliant bad block table on the last track:

 SET RLn LOCKED set unit n write locked

 SET RLn WRITEENABLED set unit n write enabled

 SET RLn RL01 set type to RL01

 SET RLn RL02 set type to RL02

 SET RLn AUTOSIZE set type based on file size at attach

 SET RLn BADBLOCK write bad block table on last track

The type options can be used only when a unit is not attached to a file. The bad block option can be used
only when a unit is attached to a file. Units can be set ENABLED or DISABLED. The RL11 supports the

BOOT command.

The RL11 implements these registers:

 name size comments

 RLCS 16 control/status

 RLDA 16 disk address

 RLBA 16 memory address

 RLBAE 6 memory address extension (RLV12)

 RLMP..RLMP2 16 multipurpose register queue

 INT 1 interrupt pending flag

 ERR 1 error flag (CSR<15>)

 DONE 1 device done flag (CSR<7>)

 IE 1 interrupt enable flag (CSR<6>)

 STIME 24 seek time, per cylinder

 RTIME 24 rotational delay

 STOP_IOE 1 stop on I/O error

Error handling is as follows:

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 disk not ready

 end of file x assume rest of disk is zero

 OS I/O error x report error and stop

2.4.3 RK611/RK06/RK07 Cartridge Disk (HK)

RK611 options include the ability to set units write enabled or write locked, to set the drive type to RK06,
RK07, or autosize, and to write a DEC standard 044 compliant bad block table on the last track:

 SET HKn LOCKED set unit n write locked

 SET HKn WRITEENABLED set unit n write enabled

 SET HKn RK06 set type to RK06

 SET HKn RK07 set type to RK07

 SET HKn AUTOSIZE set type based on file size at attach

 SET HKn BADBLOCK write bad block table on last track

The type options can be used only when a unit is not attached to a file. The bad block option can be used
only when a unit is attached to a file. Units can be set ENABLED or DISABLED. The RK611 supports the

BOOT command.

The RK611 implements these registers:

 name size comments

 HKCS1 16 control/status 1

 HKWC 16 word count

 HKBA 16 bus address

 HKDA 16 desired surface, sector

 HKCS2 16 control/status 2

 HKDS[0:7] 16 drive status, drives 0-7

 HKER[0:7] 16 drive errors, drives 0-7

 HKDB[0:2] 16 data buffer silo

 HKDC 16 desired cylinder

 HKOF 8 offset

 HKMR 16 maintenance register

 HKSPR 16 spare register

 INT 1 interrupt pending flag

 ERR 1 error flag (CSR<15>)

 DONE 1 device done flag (CSR1<7>)

 IE 1 interrupt enable flag (CSR1<6>)

 STIME 24 seek time, per cylinder

 RTIME 24 rotational delay

 STOP_IOE 1 stop on I/O error

Error handling is as follows:

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 disk not ready

 end of file x assume rest of disk is zero

 OS I/O error x report error and stop

2.4.4 UDA50 MSCP Disk Controllers (RQ, RQB, RQC, RQD)

The simulator implements four MSCP disk controllers, RQ, RQB, RQC, RQD. Initially, RQB, RQC, and
RQD are disabled. Each RQ controller simulates an UDA50 MSCP disk controller with four drives. RQ
options include the ability to set units write enabled or write locked, and to set the drive type to one of many
disk types:

 SET RQn LOCKED set unit n write locked

 SET RQn WRITEENABLED set unit n write enabled

 SET RQn RX50 set type to RX50

 SET RQn RX33 set type to RX33

 SET RQn RD51 set type to RD51

 SET RQn RD52 set type to RD52

 SET RQn RD53 set type to RD53

 SET RQn RD54 set type to RD54

 SET RQn RD31 set type to RD31

 SET RQn RA81 set type to RA81

 SET RQn RA82 set type to RA82

 set RQn RA71 set type to RA71

 SET RQn RA72 set type to RA72

 SET RQn RA90 set type to RA90

 SET RQn RA92 set type to RA92

 SET RQn RRD40 set type to RRD40 (CD ROM)

 SET RQn RAUSER{=n} set type to RA82 with n MB's

 SET -L RQn RAUSER{=n} set type to RA82 with n LBN's

The type options can be used only when a unit is not attached to a file. RAUSER is a "user specified" disk;
the user can specify the size of the disk in either MB (1000000 bytes) or logical block numbers (LBN's, 512

bytes each). The minimum size is 5MB; the maximum size is 2GB without extended file support, 1TB with
extended file support.

Units can be set ENABLED or DISABLED. The RQ controllers support the BOOT command.

Each RQ controller implements the following special SHOW commands:

 SHOW RQn TYPE show drive type

 SHOW RQ RINGS show command and response rings

 SHOW RQ FREEQ show packet free queue

 SHOW RQ RESPQ show packet response queue

 SHOW RQ UNITQ show unit queues

 SHOW RQ ALL show all ring and queue state

 SHOW RQn UNITQ show unit queues for unit n

Each RQ controller implements these registers:

 name size comments

 SA 16 status/address register

 S1DAT 16 step 1 init host data

 CQBA 22 command queue base address

 CQLNT 8 command queue length

 CQIDX 8 command queue index

 RQBA 22 request queue base address

 RQLNT 8 request queue length

 RQIDX 8 request queue index

 FREE 5 head of free packet list

 RESP 5 head of response packet list

 PBSY 5 number of busy packets

 CFLGS 16 controller flags

 CSTA 4 controller state

 PERR 9 port error number

 CRED 5 host credits

 HAT 17 host available timer

 HTMO 17 host timeout value

 CPKT[0:3] 5 current packet, units 0-3

 PKTQ[0:3] 5 packet queue, units 0-3

 UFLG[0:3] 16 unit flags, units 0-3

 INT 1 interrupt request

 ITIME 1 response time for initialization steps

 (except for step 4)

 QTIME 24 response time for 'immediate' packets

 XTIME 24 response time for data transfers

 PKTS[33*32] 16 packet buffers, 33W each, 32 entries

While VMS is not timing sensitive, most of the BSD-derived operating systems (NetBSD, OpenBSD, etc)
are. The QTIME and XTIME parameters are set to values that allow these operating systems to run
correctly.

Error handling is as follows:

 error processed as

 not attached disk not ready

 end of file assume rest of disk is zero

 OS I/O error report error and stop

2.5 Tapes

2.5.1 TM03/TE16/TU45/TU77 Magnetic Tapes (TU)

The TU controller implements the Massbus family of 800/1600bpi magnetic tape drives. TU options include
the ability to set the drive type to one of three drives (TE16, TU45, or TU77), and to set the drives write
enabled or write locked.

 SET TUn TE16 set unit n drive type to TE16

 SET TUn TU45 set unit n drive type to TU45

 SET TUn TU77 set unit n drive type to TU77

 SET Tun LOCKED set unit n write locked

 SET Tun WRITEENABLED set unit n write enabled

Magnetic tape units can be set to a specific reel capacity in MB, or to unlimited capacity:

 SET TUn CAPAC=m set unit n capacity to m MB (0 = unlimited)

 SHOW TUn CAPAC show unit n capacity in MB

Units can be set ENABLED or DISABLED. The TU controller does not support the BOOT command.

The TU controller implements the following registers:

 name size comments

 CS1 6 current operation

 FC 16 frame count

 FS 16 formatter status

 ER 16 formatter errors

 CC 16 check character

 MR 16 maintenance register

 TC 16 tape control register

 TIME 24 operation execution time

 STOP_IOE 1 stop of I/O error

Error handling is as follows:

 error processed as

 not attached tape not ready; if STOP_IOE, stop

 end of file bad tape

 OS I/O error parity error; if STOP_IOE, stop

2.5.2 TS11 Magnetic Tape (TS)

TS options include the ability to make the unit write enabled or write locked.

 SET TS LOCKED set unit write locked

 SET TS WRITEENABLED set unit write enabled

The TS drive can be set to a specific reel capacity in MB, or to unlimited capacity:

 SET TS0 CAPAC=m set capacity to m MB (0 = unlimited)

 SHOW TS0 CAPAC show capacity in MB

The TS11 does not support the BOOT command.

The TS controller implements these registers:

 name size comments

 TSSR 16 status register

 TSBA 16 bus address register

 TSDBX 16 data buffer extension register

 CHDR 16 command packet header

 CADL 16 command packet low address or count

 CADH 16 command packet high address

 CLNT 16 command packet length

 MHDR 16 message packet header

 MRFC 16 message packet residual frame count

 MXS0 16 message packet extended status 0

 MXS1 16 message packet extended status 1

 MXS2 16 message packet extended status 2

 MXS3 16 message packet extended status 3

 MXS4 16 message packet extended status 4

 WADL 16 write char packet low address

 WADH 16 write char packet high address

 WLNT 16 write char packet length

 WOPT 16 write char packet options

 WXOPT 16 write char packet extended options

 ATTN 1 attention message pending

 BOOT 1 boot request pending

 OWNC 1 if set, tape owns command buffer

 OWNM 1 if set, tape owns message buffer

 TIME 24 delay

 POS 32 position

Error handling is as follows:

 error processed as

 not attached tape not ready

 end of file bad tape

 OS I/O error fatal tape error

2.5.3 TUK50 TMSCP Disk Controller (TQ)

The TQ controller simulates the TUK50 TMSCP disk controller. TQ options include the ability to set units
write enabled or write locked, and to specify the controller type and tape length:

 SET TQn LOCKED set unit n write locked

 SET TQn WRITEENABLED set unit n write enabled

 SET TQ TK50 set controller type to TK50

 SET TQ TK70 set controller type to TK70

 SET TQ TU81 set controller type to TU81

 SET TQ TKUSER{=n} set controller type to TK50 with tape

 capacity of n MB

User-specified capacity must be between 50 and 2000 MB. The TUK50 supports the BOOT command.

Regardless of the controller type, individual units can be set to a specific reel capacity in MB, or to unlimited
capacity:

 SET TQn CAPAC=m set unit n capacity to m MB (0 = unlimited)

 SHOW TQn CAPAC show unit n capacity in MB

The TQ controller implements the following special SHOW commands:

 SHOW TQ TYPE show controller type

 SHOW TQ RINGS show command and response rings

 SHOW TQ FREEQ show packet free queue

 SHOW TQ RESPQ show packet response queue

 SHOW TQ UNITQ show unit queues

 SHOW TQ ALL show all ring and queue state

 SHOW TQn UNITQ show unit queues for unit n

The TQ controller implements these registers:

 name size comments

 SA 16 status/address register

 S1DAT 16 step 1 init host data

 CQBA 22 command queue base address

 CQLNT 8 command queue length

 CQIDX 8 command queue index

 RQBA 22 request queue base address

 RQLNT 8 request queue length

 RQIDX 8 request queue index

 FREE 5 head of free packet list

 RESP 5 head of response packet list

 PBSY 5 number of busy packets

 CFLGS 16 controller flags

 CSTA 4 controller state

 PERR 9 port error number

 CRED 5 host credits

 HAT 17 host available timer

 HTMO 17 host timeout value

 CPKT[0:3] 5 current packet, units 0-3

 PKTQ[0:3] 5 packet queue, units 0-3

 UFLG[0:3] 16 unit flags, units 0-3

 POS[0:3] 32 tape position, units 0-3

 OBJP[0:3] 32 object position, units 0-3

 INT 1 interrupt request

 ITIME 1 response time for initialization steps

 (except for step 4)

 QTIME 24 response time for 'immediate' packets

 XTIME 24 response time for data transfers

 PKTS[33*32] 16 packet buffers, 33W each, 32 entries

Error handling is as follows:

 error processed as

 not attached tape not ready

 end of file end of medium

 OS I/O error fatal tape error

2.6 Communications Devices

2.6.1 DZ11 Terminal Multiplexer (DZ)

The DZ11 is an 8-line terminal multiplexer. Up to 4 DZ11's (32 lines) are supported. The number of lines
can be changed with the command

 SET DZ LINES=n set line count to n

The line count must be a multiple of 8, with a maximum of 32.

The DZ11 supports three character processing modes, 7P, 7B, and 8B:

 mode input characters output characters

 7P high-order bit cleared high-order bit cleared,

 non-printing characters suppressed

 7B high-order bit cleared high-order bit cleared

 8B no changes no changes

The default is 8B.

The DZ11 supports logging on a per-line basis. The command

 SET DZ LOG=line=filename

enables logging for the specified line to the indicated file. The command

 SET DZ NOLOG=line

disables logging for the specified line and closes any open log file. Finally, the command

 SHOW DZ LOG

displays logging information for all DZ lines.

The terminal lines perform input and output through Telnet sessions connected to a user-specified port. The
ATTACH command specifies the port to be used:

 ATTACH {-am} DZ <port> set up listening port

where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities. The
optional switch -m turns on the DZ11's modem controls; the optional switch -a turns on active disconnects
(disconnect session if computer clears Data Terminal Ready). Without modem control, the DZ behaves as

though terminals were directly connected; disconnecting the Telnet session does not cause any operating
system-visible change in line status.

Once the DZ is attached and the simulator is running, the DZ will listen for connections on the specified port.
It assumes that the incoming connections are Telnet connections. The connection remains open until
disconnected by the simulated program, the Telnet client, a SET DZ DISCONNECT command, or a DETACH

DZ command.

Other special DZ commands:

SHOW DZ CONNECTIONS show current connections

SHOW DZ STATISTICS show statistics for active connections

SET DZ DISCONNECT=linenumber disconnects the specified line.

The DZ11 implements these registers:

 name size comments

 CSR[0:3] 16 control/status register, boards 0..3

 RBUF[0:3] 16 receive buffer, boards 0..3

 LPR[0:3] 16 line parameter register, boards 0..3

 TCR[0:3] 16 transmission control register, boards 0..3

 MSR[0:3] 16 modem status register, boards 0..3

 TDR[0:3] 16 transmit data register, boards 0..3

 SAENB[0:3] 1 silo alarm enabled, boards 0..3

 RXINT 4 receive interrupts, boards 3..0

 TXINT 4 transmit interrupts, boards 3..0

 MDMTCL 1 modem control enabled

 AUTODS 1 autodisconnect enabled

The DZ11 does not support save and restore. All open connections are lost when the simulator shuts down
or the DZ is detached.

2.7 CR11 Card Reader (CR)

The card reader (CR) implements a single controller (the CR11) and card reader (e.g., Documation M200,
GDI Model 100) by reading a file and presenting lines or cards to the simulator. Card decks may be
represented by plain text ASCII files, card image files, or column binary files. The CR11 controller is also
compatible with the CM11-F, CME11, and CMS11.

Card image files are a file format designed by Douglas W. Jones at the University of Iowa to support the
interchange of card deck data. These files have a much richer information carrying capacity than plain
ASCII files. Card Image files can contain such interchange information as card-stock color, corner cuts,
special artwork, as well as the binary punch data representing all 12 columns. Complete details on the
format, as well as sample code, are available at Prof. Jones's site: http://www.cs.uiowa.edu/~jones/cards/.

Examples of the CR11 include the M8290 and M8291 (CMS11). All card readers use a common vector at
0230 and CSR at 177160. Even though the CR11 is normally configured as a BR6 device, it is configured
for BR4 in this simulation.

The card reader supports ASCII, card image, and column binary format card “decks.” When reading plain
ASCII files, lines longer than 80 characters are silently truncated. Card image support is included for 80
column Hollerith, 82 column Hollerith (silently ignoring columns 0 and 81), and 40 column Hollerith (mark-
sense) cards. Column binary supports 80 column card images only. All files are attached read-only (as if
the -R switch were given).

 ATTACH –A CR <file> file is ASCII text

 ATTACH –B CR <file> file is column binary

 ATTACH –I CR <file> file is card image format

If no flags are given, the file extension is evaluated. If the filename ends in .TXT, the file is treated as ASCII
text. If the filename ends in .CBN, the file is treated as column binary. Otherwise, the CR driver looks for a
card image header. If a correct header is found the file is treated as card image format, otherwise it is
treated as ASCII text.

The correct character translation MUST be set if a plain text file is to be used for card deck input. The
correct translation SHOULD be set to allow correct ASCII debugging of a card image or column binary input
deck. Depending upon the operating system in use, how it was generated, and how the card data will be
read and used, the translation must be set correctly so that the proper character set is used by the driver.
Use the following command to explicitly set the correct translation:

 SET TRANSLATION={DEFAULT|026|026FTN|029|EBCDIC}

This command should be given after a deck is attached to the simulator. The mappings above are
completely described at http://www.cs.uiowa.edu/~jones/cards/codes.html. Note that DEC typically used
029 or 026FTN mappings.

DEC operating systems used a variety of methods to determine the end of a deck (recognizing that 'hopper
empty' does not necessarily mean the end of a deck. Below is a summary of the various operating system
conventions for signaling end of deck:

 RT-11: 12-11-0-1-6-7-8-9 punch in column 1

 RSTS/E: 12-11-0-1 or 12-11-0-1-6-7-8-9 punch in column 1

 RSX: 12-11-0-1-6-7-8-9 punch

 VMS: 12-11-0-1-6-7-8-9 punch in first 8 columns

 TOPS: 12-11-0-1 or 12-11-0-1-6-7-8-9 punch in column 1

Using the AUTOEOF setting, the card reader can be set to automatically generate an EOF card consisting
of the 12-11-0-1-6-7-8-9 punch in columns 1-8. When set to CD11 mode, this switch also enables automatic
setting of the EOF bit in the controller after the EOF card has been processed. [The CR11 does not have a
similar capability.] By default AUTOEOF is enabled.

 SET CR AUTOEOF

 SET CR NOAUTOEOF

The default card reader rate for the CR11 is 285 cpm. The reader rate can be set to its default value or to
anywhere in the range 200..1200 cpm. This rate may be changed while the unit is attached.

 SET CR RATE={DEFAULT|200..1200}

It is standard operating procedure for operators to load a card deck and press the momentary action RESET
button to clear any error conditions and alert the processor that a deck is available to read. Use the
following command to simulate pressing the card reader RESET button,

 SET CR RESET

Another common control of physical card readers is the STOP button. An operator could use this button to
finish the read operation for the current card and terminate reading a deck early. Use the following
command to simulate pressing the card reader STOP button.

 SET CR STOP

The simulator does not support the BOOT command. The simulator does not stop on file I/O errors. Instead

the controller signals a reader check to the CPU.

The CR controller implements these registers:

 name size comments

 BUF 8 ASCII value of last column processed

 CRS 16 CR11 status register

 CRB1 16 CR11 12-bit Hollerith character

 CRB2 16 CR11 8-bit compressed character

 CRM 16 CR11 maintenance register

 CDST 16 CD11 control/status register

 CDCC 16 CD11 column count

 CDBA 16 CD11 current bus address

 CDDB 16 CD11 data buffer, 2nd status

 BLOWER 2 blower state value

 INT 1 interrupt pending flag

 ERR 1 error flag (CRS<15>)

 IE 1 interrupt enable flag (CRS<6>)

 POS 32 file position - do not alter

 TIME 24 delay time between columns

3 Symbolic Display and Input

The VAX simulator implements symbolic display and input. Display is controlled by command line switches:

 -a,-c display as ASCII data

 -m display instruction mnemonics

 -p display compatibility mode mnemonics

 -r display RADIX50 encoding

Input parsing is controlled by the first character typed in or by command line switches:

 ' or -a ASCII characters (determined by length)

 " or -c ASCII string (maximum 60 characters)

 -p compatibility mode instruction mnemonic

 alphabetic instruction mnemonic

 numeric octal number

VAX instruction input uses standard VAX assembler syntax. Compatibility mode instruction input uses
standard PDP-11 assembler syntax.

The syntax for VAX specifiers is as follows:

syntax specifier displacement comments

#s^n, #n 0n - short literal, integer only

[Rn] 4n - indexed, second specifier follows

Rn 5n - PC illegal

(Rn) 6n - PC illegal

-(Rn) 7n - PC illegal

(Rn)+ 8n -

#i^n, #n 8F n immediate

@(Rn)+ 9n -

@#addr 9F addr absolute

{+/-}b^d(Rn) An {+/-}d byte displacement

b^d AF d - PC byte PC relative

@{+/-}b^d(Rn) Bn {+/-}d byte displacement deferred

@b^d BF d - PC byte PC relative deferred

{+/-}w^d(Rn) Cn {+/-}d word displacement

w^d CF d - PC word PC relative

@{+/-}w^d(Rn) Dn {+/-}d word displacement deferred

@w^d DF d - PC word PC relative deferred

{+/-}l^d(Rn) En {+/-}d long displacement

l^d EF d - PC long PC relative

@{+/-}l^d(Rn) Fn {+/-}d long displacement deferred

@l^d FF d - PC long PC relative deferred

If no override is given for a literal (s^ or i^) or for a displacement or PC relative address (b^, w^, or l^), the
simulator chooses the mode automatically.

