Barcode Writer in Pure Postscript

Terry Burton<tez@terryburton.co.uk

September 9, 2005

Abstract

This document describes the implementation of the Barcode Writer in Pure
Postscript project, explains by example how to use this to generate youbanw
codes, and provides a simple reference to using the symbologies thppdrss.

Contents

1 Introduction 1

2 Code Commentary 2
2.1 TheBarcode Data Structure 2
22 AnEncoder 3
2.3 TheRenderer 5
2.4 Notes Regarding Coding Style 8

3 Resources and Examples 9
3.1 Language SpecificAPIs. 9
3.2 FrontEnds. 9
3.3 Installing the Barcode Generation Capability into anfer's Virtual

Machine 10

3.4 Hints for Generating Precisely the Required Symbol 11
3.5 PrintinginPerl 12

4 Supported Symbologies 13
41 EAN-13 . . . e 13
42 EAN-8. . . . 13
4.3 UPC-A . e 14
44 UPC-E. e 14
45 EAN-5. . . 15
46 EAN-2. . . e 15
4.7 ISBN . . . 16
48 Code-39 e 16
49 Code-128and UCC/EAN-128 17
4.10 RationalizedCodabar 17
4.11 Interleaved 2 of 5and ITF-14 81
412 Code20f5 e 18
4.13 Postnet. 19
4.14 RoyalMail 19

4.15 MSI . .
4.16 Plessey

5 License

1 Introduction

Often there is a need to implement routines in several diffelanguages that output
Adobe Postscript for the purpose of printing barcodes. Phigect implements the
printing of barcodes entirely within level 2 PostScript.i§ means that the entire pro-
cess of converting the input string into the printed outguperformed by the printer
or print system, thus avoiding the need to later reimplentiemtbarcode generation
process when your development language changes.

To make it as easy as possible to incorporate this projeotyour own systems,
whether they be freely available or proprietary, it is lised under the permissive
MIT/X-Consortium License given in section 5.

The project homepage is at http://www.terryburton.cdakzodewriter.

This is the main resource for the project providing the latksvnloads of code and
documentation, as well as access to the support and deveftpnailing list.

Acknowledgements

The author wishes to take this opportunity to thank the sngabwing community

of developers that have helped to develop, test and docuthisnproject with their

suggestions and code. Most especially Michael Landers asd RcFarland for freely
giving their encoder implementations, and Lawrence Harfat his suggestions and
testing.

2 Code Commentary

This commentary assumes familiarity with the PostScripgismgé.

The code is split cleanly into two types of procedure:

The encoders Each of these represents a barcode symbdlagyg. EAN-13 or Code-
128. It takes a string containing the barcode data and aystantaining a list of
options that modify the output of the encoder. It generatsuetured represen-
tation of the barcode and its text for the symbology, inabgdihe calculation of
check digits where necessary.

The renderer This takes the output of an encoder and generates a visuakespa-
tion of the barcode.

This means that all barcodes can be generated simply in Esimanner:

(78858101497) (includetext height=0.6) upca barcode
(0123456789) (includecheck) interleaved20f5 barcode

2.1 The Barcode Data Structure

The following table describes the structured represeamtaif a barcode that is passed
by an encoder to the renderer as a dictionary when the Pgstisoexecuted.

Element Key | Value

Space bar succession sbs | String containing the integer widths, in points,
of each bar and space, starting with the left-
most bar.

Bar height succession bhs | Array containing the height of each bar in
inches, starting with the leftmost bar.

Bar base succession| bbs | Array containing the offset of the base of each
bar in inches, starting with the leftmost bar.
Human readable text| txt Array of arrays that contain the character, po-
sition, height, font and scale factor (font size),
in points, for each of the visible text charac-
ters.

Renderer options opt | String containing the user-defined renderer op-
tions.

1The PostScript Language Tutorial and Cookbook (a.k.a. the Book), which is freely available online,
serves as both a useful tutorial and reference manual torigedae.
2By symbology we mean an accepted standard for representdtitateoas a barcode

2.2 An Encoder

The procedure labelled code20f5 is a simple example of andamcwhich we will
now consider. Its purpose is to accept as input a string gontgthe barcode contents
and a string containing a list of options, and to processires way that is specific
to this encoder, and finally to output an instance of the alietiy-based data struc-
ture described in section 2.1 that represents the barcaderts in the Code 2 of 5
symbology.

As with all of the encoders, the input string is assumed tcetie for the corresponding
symbology, otherwise the behaviour is undefined.

The variables that we use in this procedure are confined &b $oope by declaring the
procedure as follows:

Icode20f5 {

0 begin

end

} bind def
Icode20f5 load 0 1 dict put

We start by immediately reading the contents strings thapassed as arguments to
this procedure by the user. We duplicate the options strewabse it is later passed
unamended to the renderer.

foptions exch def
Irenderopts options def
fbarcode exch def

We initialise a few default variables. Those variablesegponding to options that can
be enabled with the options argument are initially set teefal

fincludetext false def
ftextfont /Courier def
ftextsize 10 def
ftextpos -7 def
fheight 1 def

The options string is tokenised with each successive tokénidg either a name value
pair which we instantiate or a lone variable that we definews tllowing us to over-
ride the given default variables given above.

options {
token false eq {exit} if dup length string cvs (=) search
true eq {cvlit exch pop exch def} {cvlit true def} ifelse

} loop

Since any user given options create variables that areystvie need to convert them
back to their intended types.

ltextfont textfont cvlit def
ltextsize textsize cvr def
Itextpos textpos cvr def
/height height cvr def

We then create an array of string encodings for each of thitable characters which
we then declare in another string. This information can rvelé from careful reading
of the relevant specification, although this is often swipgly difficult to obtain.

/encs

[(1111313111) (3111111131) (1131111131) (3131111111)
(1111311131) (3111311111) (1131311111) (1111113131)
(3111113111) (1131113111) (313111) (311131)

] def

[/barchars (0123456789) def

We now store the length of the content string and calculat¢dtal number of bars and
spaces in the resulting barcode. We initialise a stringz# diependant on this length
into which we will build the space bar succession. Similang create an array into
which we will add the human readable text information.

fbarlen barcode length def
Isbs barlen 10 mul 12 add string def
/txt barlen array def

We now begin to populate the space bar succession by adairenttoding of the start
character to the beginning.

shs 0 encs 10 get putinterval

We now enter the main loop which iterates over the contemtgsfrom start to finish,
looking up the encoding for each character, adding thiseésgace bar succession.

It is important to understand how the encoding for a givematiar is derived. Firstly,
given a character, we find its position in the string of allimde characters. We then

use this position to index the array of character encodimgbtain the encoding for the
given character, which is added to the space/bar succedsi@mwise, the character is
added to the array of human readable text along with positipand font information.

0 1 barlen 1 sub {
fi exch def
barcode i 1 getinterval barchars exch search
pop
length /indx exch def
pop pop
lenc encs indx get def
shs i 10 mul 6 add enc putinterval
txt i [barcode i 1 getinterval i 14 mul 10 add -7
textfont textsize] put
} for

The encoding for the end character is obtained and addec terith of the space bar
succession.

shs barlen 10 mul 6 add encs 11 get putinterval

Finally we prepare to push a dictionary containing the spmgesuccession (and any
additional information defined in section 2.1) that will beesped to the renderer.

[retval 1 dict def
retval (shs) sbs put
retval (bhs) [sbs length 1 add 2 idiv {height} repeat] put
retval (bbs) [sbs length 1 add 2 idiv {0} repeat] put
includetext {
retval (txt) txt put
i
retval (opt) renderopts put
retval

2.3 The Renderer

The procedure labelled barcode is known as the renderechwie now consider. Its
purpose is to accept as input an instance of the dictionasgdbdata structure described
in section 2.1 that represents a barcode in some arbitrampalpgy and produce a
visual rendering of this at the current point.

The variables that we use in this procedure are confined &b $wope by declaring the
procedure as follows:

Ibarcode {

0 begin

end

} bind def
Ibarcode load 0 1 dict put

We then immediately read the dictionary-based data streiaidnich is passed as a
single argument to this procedure by an encoder, from whielextract the space bar
succession, bar height succession and bar base succession.

largs exch def

Isbs args (sbs) get def

fbhs args (bhs) get def

/obs args (bbs) get def
Irenderopts args (opt) get def

We attempt to extract from the dictionary the array contagrthe information about
human readable text. However, this may not exist in thealetiy in which case we
create a default empty array.

args (txt) known {

ftxt args (txt) get def
3o

ftxt [] def
} ifelse

Just as with the encoders, we read and tokenise the suppliech® allowing specific
rendering options to be overridden.

finkspread 0.15 def
renderopts {
token false eq {exit} if dup length string cvs (=) search
true eq {cvlit exch pop exch def} {cvlit true def} ifelse
} loop
finkspread inkspread cvr def

We have extracted or derived all of the necessary informdtmm the input, and now

use the space bar succession, bar height succession analskasuzcession in calcu-
lations that create a single array containing elementsgilratcoordinates for each of
the bars in the barcode.

We start by creating a bars array that is half the length o§ffaze bar succession. We
build this by repeatedly adding array elements that cortteenheight, x-coordinate,
y-coordinate and width of single bars. The height and y-dmates are read from the
bar height succession and the bar base succession, rgspeethilst the x-coordinate
and the width are made from a calculation of the total indeased on the space bar
succession and a compensating factor that accounts fopiekd.

fbars sbs length 1 add 2 idiv array def
/x 0.00 def
0 1 sbs length 1 sub {
fi exch def
/d shs i get 48 sub def
i 2 mod 0 eq {
/h bhs i 2 idiv get 72 mul def
Ic d 2 div x add def
ly bbs i 2 idiv get 72 mul def
Iw d inkspread sub def
bars i 2 idiv [h ¢ y w] put
}if
Ix x d add def
} for

Finally, we perform the actual rendering in two phases.tlimge use the contents of
the bars array that we just built to render each of the bais,sagondly we use the
contents of the text array extracted from the input argunb@mender the text. We
make an efficiency saving here by not performing loading &sdaling of a font if the

scale factor for the font size is 0. The graphics state isgoves across calls to this
procedure to prevent unexpected interference with thesies®eironment.

gsave

bars {

{} forall

setlinewidth moveto 0 exch rlineto stroke
} forall

txt {
{} forall
dup 0 ne {exch findfont exch scalefont setfont}
{pop pop}
ifelse
moveto show
} forall

grestore

2.4 Notes Regarding Coding Style

PostScript programming veterans are encouraged to renménatbéhe majority of peo-
ple who read the code are likely to have little, if any, prioolwledge of the language.

To encourage development, the code has been written wisle thaals in mind:

- That it be easy to use and to comprehend

- That it be easy to modify and enhance
To this end the following points should be observed for all wede submissions:

- New encoders should be based on the code of a similar existicoder

- Include comments where these clarify the operations wadl particular where
something unexpected happens

- Prefer simplicity to efficency and clarity to obfuscati@xcept where this will
be a problem

3 Resources and Examples

There are several ways of using the PostScript within your prwjects.

Many example uses of the code for various languages andptatfcan be downloaded
from the code repository at http://www.terryburton.cahgccodewriter/files/repository/

3.1 Language Specific APIs

No language specific APIs exist yet. If you have experienagngrAP| specifications
and would like to help create an API design for the projechtb@entact the author.

3.2 Front Ends

The following is a list of the front ends available for the jed.

Web based demohttp://www.raise-the-bar.co.uk/demo

pst-barcode pst-barcode is a PSTricks package fgX.
http://www.ctan.org/tex-archive/graphics/pstricksitrib/pst-barcode/

3.3 Installing the Barcode Generation Capability into a Printer’s
Virtual Machine

Most genuine PostScript printers allow procedures to bendéfsuch that they persist
across different jobs through the use of théserver ~ command. If your printer
supports this then you will be able to print the main code aimiig the definitons of
all the encoders and the renderer once, e.g. soon afterviwedgturned on, and later
omit these definitons from each of the barcode documentgythgprint.

To install the barcode generation capabilities into théuairmachine of a PostScript
printer you need to uncomment a line near the top of the codieaddt reads:

serverdict begin 0 exitserver

Once this code is printed the procedural definitions for theoders and the renderer
will remain defined across all jobs until the device is restitee by power-cycling or
with the following code:

serverdict begin 0 exitserver systemdict /quit get exec

10

3.4 Hints for Generating Precisely the Required Symbol

To create a barcode to a required width and height, withoetcsting the human read-
able text, perform the following steps.

Create a basic symbol by choosing the relevant data and pxing for the corre-
sponding encoder, and position this usiragslate such that thdottom-left corner
of the bars is in the required location:

gsave
430 750 translate

(977147396801) (includetext) eanl3 barcode
grestore

Find the uniform scale factor (same value for x and y) that@sajour output of the
requiredwidth:

gsave
430 750 translate

1.3 1.3 scale % <-- Add a line like this
(977147396801) (includetext) eanl3 barcode
grestore

Add a height option that adjusts the bdaight appropriately (taking the scaling into
account):

gsave
430 750 translate

1.3 1.3 scale

% Added height=0.8 option to adjust height
(977147396801) (includetext height=0.8) eanl3 barcode
grestore

The result should now be of the intended dimensions at theeddecation with prop-
erly scaled text. You can now add any additional options giamise the symbol.

11

3.5 Printing in Perl

This example will print a page of EAN-13s ranging between tyixeen values when
called from a shell like this:

$.Jeanl3s.pl 978186074271 978186074292 | Ipr
The contents of the scripanl3s.pl is as follows:

#!/usr/bin/perl -w
use strict;

die 'Requires two arguments’ if (@ARGV!=2);

open(PS,’barcode.ps’) || die 'File not found’;
$ _join(",<PS>);
close(PS);

print "%!PS-Adobe-2.0\n";

m/

%\ --BEGIN\ TEMPLATE--

()

%\ --END\ TEMPLATE--

Isx || die 'Unable to parse out the template’;
print $1;

for (my $i=$ARGV[0], my $j=0; $i<$ARGV[1]; $i++, $j++) {
my $x=100+150%(int($j/7));
my $y=100+100%($j%7);
print "gsave\n’;
print "$x $y translate\n”;
print "($i) (includetext) ean13 barcode\n";
print "grestore\n”;

}

print "showpage\n”;

12

4 Supported Symbologies

The following section shows the symbologies that are supgdwy the encoders, in-
cluding the available features for each. This list may noupeo-date. If it does not
contain any of the formats or features that you require thestk the project source
code or try the support mailing list.

4.1 EAN-13

Data 12 or 13 digits

Option | Feature

Options includetext] Enable human readable text

Notes If just 12 digits are entered then the check digit is cal@datutomatically

917818601742712Il >

Figure 1:(9781860742712) (includetext guardwhitespace) eanl3 bar code
4.2 EAN-8
Data 8 digits
Otions Option | Feature

P includetext | Enable human readable text

<l1234l5678/>

Figure 2: (12345678) (includetext guardwhitespace height=0.6) ean 8
barcode

13

4.3 UPC-A

Data 11 or 12 digits

Option | Feature

OPLONS 4 dudetext | Enable human readable text

Notes If just 11 digits are entered then the check digit is cal@dautomatically

7188581101497

Figure 3:(78858101497) (includetext) upca barcode

e

4.4 UPC-E

Data 7 or 8 digits

Option | Feature

Options includetext | Enable human readable text

Notes If just 7 digits are entered then the check digit is calculatatomatically

123456

Figure 4:(0123456) (includetext) upce barcode

0 5

14

45 EAN-5

Data 5 digits
Ontions Option | Feature
P includetext | Enable human readable text

ﬂ1101>

Figure 5:(90200) (includetext guardwhitespace) ean5 barcode

4.6 EAN-2
Data 2 digits
Ontions Option | Feature
P includetext] Enable human readable text

3“ |

Figure 6:(38) (includetext guardwhitespace) ean2 barcode

15

4.7 |I1SBN

Data 9 or 10 digits seperated appropriately with dashes

Option | Feature

OPLONS 4 dudetext | Enable human readable text

Notes If just 9 digits are entered then the human readable ISBNkcHagit is calcu-
lated automatically

ISBN 1-58880-149-7

9178158811801494ll >

Figure 7:(1-58880-149) (includetext) isbn barcode

4.8 Code-39

Data Variable number of characters, digits and any of the symboi®/+% .

Option Feature
Obtions includecheck Enable check digit
P includetext Enable human readable text
includecheckintext Make check digit visible in text
*C O D E - 39 *

Figure 8:(CODE-39) (includecheck includetext) code39 barcode

16

4.9 Code-128 and UCC/EAN-128

Data Variable number of ASCII characters and special funtionlsgis, starting with
the approriate start character for the initial character S€C/EAN-128s must
have a manditor¥NC 1symbol immediately following the start character.

Option | Feature
Options includetext Enable human readable text
includecheckintext Make check digit visible in text

Notes Any non-printable character can be entered via its escapdidad value, for
example'070 for ACKand™102 for FNC 1 Since a caret symbol serves as an
escape character it must be escapeddés if used in the data. The check
character is always added automatically.

Count 1234 !
Figure 9:("104°102Count"0991234°101!) (includetext) codel28 bar code

4.10 Rationalized Codabar

Data Variable number of digits and any of the symbei$.+ABCD .

Option Feature

Options @ncludecheck Enable check digit
includetext Enable human readable text
includecheckintext Make check digit visible in text

01234567809
Figure 10:(0123456789) (includetext) rationalizedCodabar barcode

17

4.11 Interleaved 2 of 5 and ITF-14

Data Variable number of digits. An ITF-14 is 14 characters andsduat have a check

digit.
Option | Feature
Obtions includecheck Enable check digit
P includetext Enable human readable text
includecheckintext Make check digit visible in text

Notes The data may be automatically prefixed with O to make the diathyding op-
tional check digit, of even length.

Figure 11: (05012345678900) (includecheck height=0.7) interleaved 20f5
barcode

412 Code?2of5

Data Variable number of digits

Option | Feature
includetext] Enable human readable text

Options

0123456789

Figure 12: (0123456789) (includetext textpos=75 textfont=Helvetic a
textsize=16) code2of5 barcode

18

4.13 Postnet

Data Variable number digits

Option | Feature
Options includetext Enable human readable text
includecheckintext Make the check digit visible in the text

Notes Check digit is always added automatically

”IIIIIIIIIIIIIIII”II|II|III|II”IIIIIIIIIII”
0 1 2 3 4 5 6 7

Figure 13: (01234567) (includetext textpos=-10 textfont=Arial
textsize=10) postnet barcode

4.14 Royal Mail

Data Variable number digits and capital letters

Option | Feature
Options includetext Enable human readable text
includecheckintext Make the check digit visible in the text

Notes Check digit is always added automatically

ey

Figure 14:(LE28HS9Z) (includetext) royalmail barcode

19

415 MSI

Data Variable number digits

Option | Feature
Obtions includecheck Enable check digit
P includetext Enable human readable text
includecheckintext Make check digit visible in the text
01 2 3 45 6 1 E||||

Figure 15:(0123456789) (includecheck includetext) msi barcode

4.16 Plessey

Data Variable number of hexadecimal characters
Option | Feature

Options includetext Enable human readable text
includecheckintext Make the check digits visible in the text

Notes Check digits are always added automatically.

01 23456 789 A BT CDETF
Figure 16:(012345ABCDEF) (includetext) plessey barcode

20

5 License

Copyright(©2004 Terry Burton

Permission is hereby granted, free of charge, to any perstaining a copy of this
software and associated documentation files (the "Softiyaedeal in the Software
without restriction, including without limitation the figs to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies oBb#ware, and to permit persons
to whom the Software is furnished to do so, subject to thefdhg conditions:

The above copyright notice and this permission notice dfmlhcluded in all copies
or substantial portions of the Software.

The software is provided "as is”, without warranty of any direxpress or implied,
including but not limited to the warranties of merchantailfitness for a particular
purpose and noninfringement. In no event shall the authoropyright holders be
liable for any claim, damages or other liability, whetherimaction of contract, tort or
otherwise, arising from, out of or in connection with theta@fre or the use or other
dealings in the software.

21

